Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598833594> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2598833594 endingPage "316" @default.
- W2598833594 startingPage "308" @default.
- W2598833594 abstract "Several natural languages have had much processing, but the problem of limited linguistic resources remains. Manual creation of parallel corpora by humans is rather expensive and very time consuming. In addition, language data required for statistical machine translation (SMT) does not exist in adequate capacity to use its statistical information to initiate the research process. On the other hand, applying unsubstantiated approaches to build the parallel resources from multiple means like comparable corpora or quasi-comparable corpora is very complicated and provides rather noisy output. These outputs of the process would later need to be reprocessed, and in-domain adaptations would also be required. To optimize the performance of these algorithms, it is essential to use a quality parallel corpus for training of the end-to-end procedure. In the present research, we have developed a methodology to generate an accurate parallel corpus from monolingual resources through the calculation of compatibility between the results of machine translation systems. We have translations of huge, single-language resources through the application of multiple translation systems and the strict measurement of translation compatibility with rules based on the Levenshtein distance. The results produced by such an approach are very favorable. All the monolingual resources that we obtained were taken from the WMT16 conference for Czech to generate the parallel corpus, which improved translation performance." @default.
- W2598833594 created "2017-04-07" @default.
- W2598833594 creator A5009169567 @default.
- W2598833594 creator A5030149703 @default.
- W2598833594 date "2017-01-01" @default.
- W2598833594 modified "2023-09-26" @default.
- W2598833594 title "Augmenting SMT with Generated Pseudo-parallel Corpora from Monolingual News Resources" @default.
- W2598833594 cites W1631260214 @default.
- W2598833594 cites W1742951243 @default.
- W2598833594 cites W2006617528 @default.
- W2598833594 cites W2091889711 @default.
- W2598833594 cites W2101105183 @default.
- W2598833594 cites W2111666304 @default.
- W2598833594 cites W2119202242 @default.
- W2598833594 cites W2124807415 @default.
- W2598833594 cites W2156279557 @default.
- W2598833594 cites W2481351509 @default.
- W2598833594 doi "https://doi.org/10.1007/978-3-319-56535-4_31" @default.
- W2598833594 hasPublicationYear "2017" @default.
- W2598833594 type Work @default.
- W2598833594 sameAs 2598833594 @default.
- W2598833594 citedByCount "0" @default.
- W2598833594 crossrefType "book-chapter" @default.
- W2598833594 hasAuthorship W2598833594A5009169567 @default.
- W2598833594 hasAuthorship W2598833594A5030149703 @default.
- W2598833594 hasConcept C104317684 @default.
- W2598833594 hasConcept C105580179 @default.
- W2598833594 hasConcept C127313418 @default.
- W2598833594 hasConcept C134306372 @default.
- W2598833594 hasConcept C149364088 @default.
- W2598833594 hasConcept C154945302 @default.
- W2598833594 hasConcept C17409809 @default.
- W2598833594 hasConcept C185592680 @default.
- W2598833594 hasConcept C199360897 @default.
- W2598833594 hasConcept C203005215 @default.
- W2598833594 hasConcept C204321447 @default.
- W2598833594 hasConcept C2776434776 @default.
- W2598833594 hasConcept C2778648169 @default.
- W2598833594 hasConcept C2985367798 @default.
- W2598833594 hasConcept C33923547 @default.
- W2598833594 hasConcept C36503486 @default.
- W2598833594 hasConcept C41008148 @default.
- W2598833594 hasConcept C55493867 @default.
- W2598833594 hasConcept C95623464 @default.
- W2598833594 hasConcept C98045186 @default.
- W2598833594 hasConceptScore W2598833594C104317684 @default.
- W2598833594 hasConceptScore W2598833594C105580179 @default.
- W2598833594 hasConceptScore W2598833594C127313418 @default.
- W2598833594 hasConceptScore W2598833594C134306372 @default.
- W2598833594 hasConceptScore W2598833594C149364088 @default.
- W2598833594 hasConceptScore W2598833594C154945302 @default.
- W2598833594 hasConceptScore W2598833594C17409809 @default.
- W2598833594 hasConceptScore W2598833594C185592680 @default.
- W2598833594 hasConceptScore W2598833594C199360897 @default.
- W2598833594 hasConceptScore W2598833594C203005215 @default.
- W2598833594 hasConceptScore W2598833594C204321447 @default.
- W2598833594 hasConceptScore W2598833594C2776434776 @default.
- W2598833594 hasConceptScore W2598833594C2778648169 @default.
- W2598833594 hasConceptScore W2598833594C2985367798 @default.
- W2598833594 hasConceptScore W2598833594C33923547 @default.
- W2598833594 hasConceptScore W2598833594C36503486 @default.
- W2598833594 hasConceptScore W2598833594C41008148 @default.
- W2598833594 hasConceptScore W2598833594C55493867 @default.
- W2598833594 hasConceptScore W2598833594C95623464 @default.
- W2598833594 hasConceptScore W2598833594C98045186 @default.
- W2598833594 hasLocation W25988335941 @default.
- W2598833594 hasOpenAccess W2598833594 @default.
- W2598833594 hasPrimaryLocation W25988335941 @default.
- W2598833594 hasRelatedWork W2140460368 @default.
- W2598833594 hasRelatedWork W2744813330 @default.
- W2598833594 hasRelatedWork W2794036084 @default.
- W2598833594 hasRelatedWork W2805394970 @default.
- W2598833594 hasRelatedWork W2887289680 @default.
- W2598833594 hasRelatedWork W2947177396 @default.
- W2598833594 hasRelatedWork W2963897095 @default.
- W2598833594 hasRelatedWork W4307783854 @default.
- W2598833594 hasRelatedWork W4379525811 @default.
- W2598833594 hasRelatedWork W4385572994 @default.
- W2598833594 isParatext "false" @default.
- W2598833594 isRetracted "false" @default.
- W2598833594 magId "2598833594" @default.
- W2598833594 workType "book-chapter" @default.