Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598939256> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2598939256 abstract "Increased globalisation and competition are drivers for process analytical technologies (PAT) that enable seamless process control, greater flexibility and cost efficiency in the process industries. The paper will discuss process modelling and control for industrial applications with an emphasis on solutions enabling the real-time data analytics of sensor measurements that PAT demands. This research aims to introduce an integrated process control approach, embedding novel sensors for monitoring in real time the critical control parameters of key processes in the minerals, ceramics, non-ferrous metals, and chemical process industries. The paper presents a comparison of machine learning algorithms applied to sensor data collected for a polymerisation process. Several machine learning algorithms including Adaptive Neuro-Fuzzy Inference Systems, Neural Networks and Genetic Algorithms were implemented using MATLAB® Software and compared in terms of accuracy (MSE) and robustness in modelling process progression. The results obtained show that machine learning-based approaches produce significantly more accurate and robust process models compared to models developed manually while also being more adaptable to new data. The paper presents perspectives on the potential benefits of machine learning algorithms with a view to their future in the industrial process industry." @default.
- W2598939256 created "2017-04-07" @default.
- W2598939256 creator A5045163090 @default.
- W2598939256 creator A5051362161 @default.
- W2598939256 creator A5075901752 @default.
- W2598939256 creator A5079193770 @default.
- W2598939256 creator A5085987953 @default.
- W2598939256 date "2016-12-01" @default.
- W2598939256 modified "2023-09-26" @default.
- W2598939256 title "Machine learning algorithms for process analytical technology" @default.
- W2598939256 doi "https://doi.org/10.1109/wcicss.2016.7882607" @default.
- W2598939256 hasPublicationYear "2016" @default.
- W2598939256 type Work @default.
- W2598939256 sameAs 2598939256 @default.
- W2598939256 citedByCount "3" @default.
- W2598939256 countsByYear W25989392562019 @default.
- W2598939256 countsByYear W25989392562021 @default.
- W2598939256 crossrefType "proceedings-article" @default.
- W2598939256 hasAuthorship W2598939256A5045163090 @default.
- W2598939256 hasAuthorship W2598939256A5051362161 @default.
- W2598939256 hasAuthorship W2598939256A5075901752 @default.
- W2598939256 hasAuthorship W2598939256A5079193770 @default.
- W2598939256 hasAuthorship W2598939256A5085987953 @default.
- W2598939256 hasConcept C104317684 @default.
- W2598939256 hasConcept C111919701 @default.
- W2598939256 hasConcept C11413529 @default.
- W2598939256 hasConcept C119857082 @default.
- W2598939256 hasConcept C127413603 @default.
- W2598939256 hasConcept C154945302 @default.
- W2598939256 hasConcept C155386361 @default.
- W2598939256 hasConcept C157978775 @default.
- W2598939256 hasConcept C174998907 @default.
- W2598939256 hasConcept C185592680 @default.
- W2598939256 hasConcept C21547014 @default.
- W2598939256 hasConcept C41008148 @default.
- W2598939256 hasConcept C50644808 @default.
- W2598939256 hasConcept C55493867 @default.
- W2598939256 hasConcept C63479239 @default.
- W2598939256 hasConcept C76956256 @default.
- W2598939256 hasConcept C98045186 @default.
- W2598939256 hasConceptScore W2598939256C104317684 @default.
- W2598939256 hasConceptScore W2598939256C111919701 @default.
- W2598939256 hasConceptScore W2598939256C11413529 @default.
- W2598939256 hasConceptScore W2598939256C119857082 @default.
- W2598939256 hasConceptScore W2598939256C127413603 @default.
- W2598939256 hasConceptScore W2598939256C154945302 @default.
- W2598939256 hasConceptScore W2598939256C155386361 @default.
- W2598939256 hasConceptScore W2598939256C157978775 @default.
- W2598939256 hasConceptScore W2598939256C174998907 @default.
- W2598939256 hasConceptScore W2598939256C185592680 @default.
- W2598939256 hasConceptScore W2598939256C21547014 @default.
- W2598939256 hasConceptScore W2598939256C41008148 @default.
- W2598939256 hasConceptScore W2598939256C50644808 @default.
- W2598939256 hasConceptScore W2598939256C55493867 @default.
- W2598939256 hasConceptScore W2598939256C63479239 @default.
- W2598939256 hasConceptScore W2598939256C76956256 @default.
- W2598939256 hasConceptScore W2598939256C98045186 @default.
- W2598939256 hasLocation W25989392561 @default.
- W2598939256 hasOpenAccess W2598939256 @default.
- W2598939256 hasPrimaryLocation W25989392561 @default.
- W2598939256 hasRelatedWork W1535285869 @default.
- W2598939256 hasRelatedWork W1558182557 @default.
- W2598939256 hasRelatedWork W1838010013 @default.
- W2598939256 hasRelatedWork W1974471299 @default.
- W2598939256 hasRelatedWork W1988902073 @default.
- W2598939256 hasRelatedWork W2012617708 @default.
- W2598939256 hasRelatedWork W2085580665 @default.
- W2598939256 hasRelatedWork W2145564624 @default.
- W2598939256 hasRelatedWork W2971021153 @default.
- W2598939256 hasRelatedWork W4281571746 @default.
- W2598939256 isParatext "false" @default.
- W2598939256 isRetracted "false" @default.
- W2598939256 magId "2598939256" @default.
- W2598939256 workType "article" @default.