Matches in SemOpenAlex for { <https://semopenalex.org/work/W2599111461> ?p ?o ?g. }
- W2599111461 endingPage "136" @default.
- W2599111461 startingPage "124" @default.
- W2599111461 abstract "The respiratory system dynamic is of high significance when it comes to the detection of lung abnormalities, which highlights the importance of presenting a reliable model for it. In this paper, we introduce a novel dynamic modelling method for the characterization of the lung sounds (LS), based on the attractor recurrent neural network (ARNN). The ARNN structure allows the development of an effective LS model. Additionally, it has the capability to reproduce the distinctive features of the lung sounds using its formed attractors. Furthermore, a novel ARNN topology based on fuzzy functions (FFs-ARNN) is developed. Given the utility of the recurrent quantification analysis (RQA) as a tool to assess the nature of complex systems, it was used to evaluate the performance of both the ARNN and the FFs-ARNN models. The experimental results demonstrate the effectiveness of the proposed approaches for multichannel LS analysis. In particular, a classification accuracy of 91% was achieved using FFs-ARNN with sequences of RQA features." @default.
- W2599111461 created "2017-04-07" @default.
- W2599111461 creator A5022805440 @default.
- W2599111461 creator A5037720208 @default.
- W2599111461 date "2017-05-01" @default.
- W2599111461 modified "2023-10-17" @default.
- W2599111461 title "The attractor recurrent neural network based on fuzzy functions: An effective model for the classification of lung abnormalities" @default.
- W2599111461 cites W1970602203 @default.
- W2599111461 cites W1980128308 @default.
- W2599111461 cites W1980860850 @default.
- W2599111461 cites W1984545577 @default.
- W2599111461 cites W2015855569 @default.
- W2599111461 cites W2016016168 @default.
- W2599111461 cites W2017939241 @default.
- W2599111461 cites W2022137338 @default.
- W2599111461 cites W2026528815 @default.
- W2599111461 cites W2029010243 @default.
- W2599111461 cites W2029827904 @default.
- W2599111461 cites W2033496913 @default.
- W2599111461 cites W2043392634 @default.
- W2599111461 cites W2047469300 @default.
- W2599111461 cites W2050220558 @default.
- W2599111461 cites W2051700230 @default.
- W2599111461 cites W2054652218 @default.
- W2599111461 cites W2055821069 @default.
- W2599111461 cites W2071797156 @default.
- W2599111461 cites W2076866543 @default.
- W2599111461 cites W2081681829 @default.
- W2599111461 cites W2093867321 @default.
- W2599111461 cites W2124228996 @default.
- W2599111461 cites W2124954038 @default.
- W2599111461 cites W2129140579 @default.
- W2599111461 cites W2130716214 @default.
- W2599111461 cites W2133340843 @default.
- W2599111461 cites W2133893734 @default.
- W2599111461 cites W2150455640 @default.
- W2599111461 cites W2227571529 @default.
- W2599111461 cites W2292141392 @default.
- W2599111461 cites W2399296970 @default.
- W2599111461 cites W2022861694 @default.
- W2599111461 doi "https://doi.org/10.1016/j.compbiomed.2017.03.019" @default.
- W2599111461 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28363113" @default.
- W2599111461 hasPublicationYear "2017" @default.
- W2599111461 type Work @default.
- W2599111461 sameAs 2599111461 @default.
- W2599111461 citedByCount "19" @default.
- W2599111461 countsByYear W25991114612017 @default.
- W2599111461 countsByYear W25991114612018 @default.
- W2599111461 countsByYear W25991114612019 @default.
- W2599111461 countsByYear W25991114612020 @default.
- W2599111461 countsByYear W25991114612021 @default.
- W2599111461 countsByYear W25991114612022 @default.
- W2599111461 countsByYear W25991114612023 @default.
- W2599111461 crossrefType "journal-article" @default.
- W2599111461 hasAuthorship W2599111461A5022805440 @default.
- W2599111461 hasAuthorship W2599111461A5037720208 @default.
- W2599111461 hasConcept C114614502 @default.
- W2599111461 hasConcept C121332964 @default.
- W2599111461 hasConcept C134306372 @default.
- W2599111461 hasConcept C147168706 @default.
- W2599111461 hasConcept C153180895 @default.
- W2599111461 hasConcept C154945302 @default.
- W2599111461 hasConcept C158622935 @default.
- W2599111461 hasConcept C164380108 @default.
- W2599111461 hasConcept C184720557 @default.
- W2599111461 hasConcept C33923547 @default.
- W2599111461 hasConcept C41008148 @default.
- W2599111461 hasConcept C43456602 @default.
- W2599111461 hasConcept C50644808 @default.
- W2599111461 hasConcept C58166 @default.
- W2599111461 hasConcept C62520636 @default.
- W2599111461 hasConceptScore W2599111461C114614502 @default.
- W2599111461 hasConceptScore W2599111461C121332964 @default.
- W2599111461 hasConceptScore W2599111461C134306372 @default.
- W2599111461 hasConceptScore W2599111461C147168706 @default.
- W2599111461 hasConceptScore W2599111461C153180895 @default.
- W2599111461 hasConceptScore W2599111461C154945302 @default.
- W2599111461 hasConceptScore W2599111461C158622935 @default.
- W2599111461 hasConceptScore W2599111461C164380108 @default.
- W2599111461 hasConceptScore W2599111461C184720557 @default.
- W2599111461 hasConceptScore W2599111461C33923547 @default.
- W2599111461 hasConceptScore W2599111461C41008148 @default.
- W2599111461 hasConceptScore W2599111461C43456602 @default.
- W2599111461 hasConceptScore W2599111461C50644808 @default.
- W2599111461 hasConceptScore W2599111461C58166 @default.
- W2599111461 hasConceptScore W2599111461C62520636 @default.
- W2599111461 hasLocation W25991114611 @default.
- W2599111461 hasLocation W25991114612 @default.
- W2599111461 hasOpenAccess W2599111461 @default.
- W2599111461 hasPrimaryLocation W25991114611 @default.
- W2599111461 hasRelatedWork W2014697880 @default.
- W2599111461 hasRelatedWork W2018754379 @default.
- W2599111461 hasRelatedWork W2033914206 @default.
- W2599111461 hasRelatedWork W2146076056 @default.
- W2599111461 hasRelatedWork W2163831990 @default.
- W2599111461 hasRelatedWork W2305874582 @default.
- W2599111461 hasRelatedWork W2386387936 @default.
- W2599111461 hasRelatedWork W2902723393 @default.