Matches in SemOpenAlex for { <https://semopenalex.org/work/W2599260882> ?p ?o ?g. }
- W2599260882 abstract "Semi-automating the analyses of accelerometry data makes it possible to synthesize large data sets. However, when constructing activity budgets from accelerometry data, there are many methods to extract, analyse and report data and results. For instance, machine learning is a robust approach to classifying data. We used a new method, super learning, that combines base learners (different machine learning methods) in an optimal manner to achieve overall improved accuracy. Other facets of super learning include the number of behavioural categories to predict, the number of epochs (sample window size) used to split data for training and testing and the parameters on which to train the models. The super learner accurately classified behaviour categories with higher accuracy and lower variance than comparative models. For all models tested, using four behaviours, in comparison with six, achieved higher rates of accuracy. The number of epochs chosen also affected the accuracy with smaller epochs (7 and 13) performing better than longer epochs (25 and 75). Correct model selection, training and testing are imperative to creating reliable and valid classification models. To do so means model fitting must use a wide array of selection criteria. We evaluated a number of these including model, number of behaviours to classify and epoch length and then used a parameter grid search to implement the models. We found that all criteria tested contributed to the models’ overall accuracies. Fewer behaviour categories and shorter epoch length improved the performance of all models tested. The super learner classified behaviours with higher accuracy and lower variance than other models tested. However, when using this model, users need to consider the additional human and computational time required for implementation. Machine learning is a powerful method for classifying the behaviour of animals from accelerometers. Care and consideration of the modelling parameters evaluated in this study are essential when using this type of statistical analysis." @default.
- W2599260882 created "2017-04-07" @default.
- W2599260882 creator A5008934541 @default.
- W2599260882 creator A5016236970 @default.
- W2599260882 creator A5037258039 @default.
- W2599260882 creator A5044385292 @default.
- W2599260882 creator A5070090665 @default.
- W2599260882 creator A5088030808 @default.
- W2599260882 date "2017-03-29" @default.
- W2599260882 modified "2023-10-16" @default.
- W2599260882 title "Super machine learning: improving accuracy and reducing variance of behaviour classification from accelerometry" @default.
- W2599260882 cites W1513626006 @default.
- W2599260882 cites W1545889824 @default.
- W2599260882 cites W1944732173 @default.
- W2599260882 cites W1979613719 @default.
- W2599260882 cites W1989400668 @default.
- W2599260882 cites W2037632996 @default.
- W2599260882 cites W2058083169 @default.
- W2599260882 cites W2058593578 @default.
- W2599260882 cites W2061733446 @default.
- W2599260882 cites W2063304499 @default.
- W2599260882 cites W2091314883 @default.
- W2599260882 cites W2107687774 @default.
- W2599260882 cites W2108916750 @default.
- W2599260882 cites W2120553757 @default.
- W2599260882 cites W2121600760 @default.
- W2599260882 cites W2122303322 @default.
- W2599260882 cites W2136375252 @default.
- W2599260882 cites W2145528623 @default.
- W2599260882 cites W2150765167 @default.
- W2599260882 cites W2157657991 @default.
- W2599260882 cites W2167975231 @default.
- W2599260882 cites W2189147953 @default.
- W2599260882 cites W2255128034 @default.
- W2599260882 cites W2294621169 @default.
- W2599260882 cites W2305408943 @default.
- W2599260882 cites W2415987322 @default.
- W2599260882 cites W2570554073 @default.
- W2599260882 cites W29108580 @default.
- W2599260882 cites W4233056867 @default.
- W2599260882 cites W4239693605 @default.
- W2599260882 cites W4294541781 @default.
- W2599260882 doi "https://doi.org/10.1186/s40317-017-0123-1" @default.
- W2599260882 hasPublicationYear "2017" @default.
- W2599260882 type Work @default.
- W2599260882 sameAs 2599260882 @default.
- W2599260882 citedByCount "44" @default.
- W2599260882 countsByYear W25992608822018 @default.
- W2599260882 countsByYear W25992608822019 @default.
- W2599260882 countsByYear W25992608822020 @default.
- W2599260882 countsByYear W25992608822021 @default.
- W2599260882 countsByYear W25992608822022 @default.
- W2599260882 countsByYear W25992608822023 @default.
- W2599260882 crossrefType "journal-article" @default.
- W2599260882 hasAuthorship W2599260882A5008934541 @default.
- W2599260882 hasAuthorship W2599260882A5016236970 @default.
- W2599260882 hasAuthorship W2599260882A5037258039 @default.
- W2599260882 hasAuthorship W2599260882A5044385292 @default.
- W2599260882 hasAuthorship W2599260882A5070090665 @default.
- W2599260882 hasAuthorship W2599260882A5088030808 @default.
- W2599260882 hasBestOaLocation W25992608821 @default.
- W2599260882 hasConcept C10485038 @default.
- W2599260882 hasConcept C119857082 @default.
- W2599260882 hasConcept C121955636 @default.
- W2599260882 hasConcept C12267149 @default.
- W2599260882 hasConcept C124101348 @default.
- W2599260882 hasConcept C144133560 @default.
- W2599260882 hasConcept C154945302 @default.
- W2599260882 hasConcept C185592680 @default.
- W2599260882 hasConcept C196083921 @default.
- W2599260882 hasConcept C198531522 @default.
- W2599260882 hasConcept C41008148 @default.
- W2599260882 hasConcept C43617362 @default.
- W2599260882 hasConcept C81917197 @default.
- W2599260882 hasConcept C93959086 @default.
- W2599260882 hasConceptScore W2599260882C10485038 @default.
- W2599260882 hasConceptScore W2599260882C119857082 @default.
- W2599260882 hasConceptScore W2599260882C121955636 @default.
- W2599260882 hasConceptScore W2599260882C12267149 @default.
- W2599260882 hasConceptScore W2599260882C124101348 @default.
- W2599260882 hasConceptScore W2599260882C144133560 @default.
- W2599260882 hasConceptScore W2599260882C154945302 @default.
- W2599260882 hasConceptScore W2599260882C185592680 @default.
- W2599260882 hasConceptScore W2599260882C196083921 @default.
- W2599260882 hasConceptScore W2599260882C198531522 @default.
- W2599260882 hasConceptScore W2599260882C41008148 @default.
- W2599260882 hasConceptScore W2599260882C43617362 @default.
- W2599260882 hasConceptScore W2599260882C81917197 @default.
- W2599260882 hasConceptScore W2599260882C93959086 @default.
- W2599260882 hasFunder F4320320591 @default.
- W2599260882 hasFunder F4320334704 @default.
- W2599260882 hasIssue "1" @default.
- W2599260882 hasLocation W25992608821 @default.
- W2599260882 hasLocation W25992608822 @default.
- W2599260882 hasOpenAccess W2599260882 @default.
- W2599260882 hasPrimaryLocation W25992608821 @default.
- W2599260882 hasRelatedWork W2139233737 @default.
- W2599260882 hasRelatedWork W2152274019 @default.
- W2599260882 hasRelatedWork W2154776925 @default.
- W2599260882 hasRelatedWork W3124121643 @default.