Matches in SemOpenAlex for { <https://semopenalex.org/work/W2599535880> ?p ?o ?g. }
- W2599535880 endingPage "459" @default.
- W2599535880 startingPage "456" @default.
- W2599535880 abstract "A general simulation approach that can replicate, and in theory predict, the growth of a wide range of crystal types, including porous, molecular and ionic crystals, is demonstrated. Understanding crystal growth is essential for controlling functionality in modern materials. Michael Anderson et al. describe a simulation approach to predicting crystal growth that can replicate, and in theory predict, the fine details of surface structure and habit for a wide range of crystal types, including porous crystalline materials, metal–organic frameworks and ionic crystals. The method is based on Monte Carlo simulations of 'units of growth'—space-filling tiles or Voronoi polyhedra, depending on the nature of the crystal. This is a coarse-grained alternative to the computationally intensive and sometimes intractable problem of simulating individual atomic positions. The approach replicates the surface structure of experimentally grown crystals that incorporate growth modifiers or common defects, and those grown out of equilibrium, and could be applicable across a variety of crystal systems, the authors say. Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years1,2,3,4,5, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy6,7,8. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system9,10,11. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal–organic frameworks, calcite, urea and l-cystine." @default.
- W2599535880 created "2017-04-07" @default.
- W2599535880 creator A5003697028 @default.
- W2599535880 creator A5005578550 @default.
- W2599535880 creator A5013438507 @default.
- W2599535880 creator A5019144569 @default.
- W2599535880 creator A5026996531 @default.
- W2599535880 creator A5033443617 @default.
- W2599535880 creator A5036752492 @default.
- W2599535880 creator A5051521104 @default.
- W2599535880 creator A5067191782 @default.
- W2599535880 creator A5068980242 @default.
- W2599535880 creator A5071557410 @default.
- W2599535880 date "2017-04-01" @default.
- W2599535880 modified "2023-10-09" @default.
- W2599535880 title "Predicting crystal growth via a unified kinetic three-dimensional partition model" @default.
- W2599535880 cites W1965571863 @default.
- W2599535880 cites W1969248568 @default.
- W2599535880 cites W1969555886 @default.
- W2599535880 cites W1981259842 @default.
- W2599535880 cites W1990638224 @default.
- W2599535880 cites W1991393252 @default.
- W2599535880 cites W1999908724 @default.
- W2599535880 cites W1999937609 @default.
- W2599535880 cites W2005016547 @default.
- W2599535880 cites W2015505066 @default.
- W2599535880 cites W2020629882 @default.
- W2599535880 cites W2022167379 @default.
- W2599535880 cites W2022476606 @default.
- W2599535880 cites W2025212157 @default.
- W2599535880 cites W2025333274 @default.
- W2599535880 cites W2026059761 @default.
- W2599535880 cites W2036924511 @default.
- W2599535880 cites W2052522470 @default.
- W2599535880 cites W2055563809 @default.
- W2599535880 cites W2064188478 @default.
- W2599535880 cites W2069529017 @default.
- W2599535880 cites W2073408549 @default.
- W2599535880 cites W2085221906 @default.
- W2599535880 cites W2092133956 @default.
- W2599535880 cites W2113217228 @default.
- W2599535880 cites W2129116959 @default.
- W2599535880 cites W2162579889 @default.
- W2599535880 cites W2286413847 @default.
- W2599535880 cites W2328906361 @default.
- W2599535880 cites W4255944549 @default.
- W2599535880 doi "https://doi.org/10.1038/nature21684" @default.
- W2599535880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28371799" @default.
- W2599535880 hasPublicationYear "2017" @default.
- W2599535880 type Work @default.
- W2599535880 sameAs 2599535880 @default.
- W2599535880 citedByCount "83" @default.
- W2599535880 countsByYear W25995358802017 @default.
- W2599535880 countsByYear W25995358802018 @default.
- W2599535880 countsByYear W25995358802019 @default.
- W2599535880 countsByYear W25995358802020 @default.
- W2599535880 countsByYear W25995358802021 @default.
- W2599535880 countsByYear W25995358802022 @default.
- W2599535880 countsByYear W25995358802023 @default.
- W2599535880 crossrefType "journal-article" @default.
- W2599535880 hasAuthorship W2599535880A5003697028 @default.
- W2599535880 hasAuthorship W2599535880A5005578550 @default.
- W2599535880 hasAuthorship W2599535880A5013438507 @default.
- W2599535880 hasAuthorship W2599535880A5019144569 @default.
- W2599535880 hasAuthorship W2599535880A5026996531 @default.
- W2599535880 hasAuthorship W2599535880A5033443617 @default.
- W2599535880 hasAuthorship W2599535880A5036752492 @default.
- W2599535880 hasAuthorship W2599535880A5051521104 @default.
- W2599535880 hasAuthorship W2599535880A5067191782 @default.
- W2599535880 hasAuthorship W2599535880A5068980242 @default.
- W2599535880 hasAuthorship W2599535880A5071557410 @default.
- W2599535880 hasBestOaLocation W25995358802 @default.
- W2599535880 hasConcept C105569014 @default.
- W2599535880 hasConcept C105795698 @default.
- W2599535880 hasConcept C121332964 @default.
- W2599535880 hasConcept C121864883 @default.
- W2599535880 hasConcept C145148216 @default.
- W2599535880 hasConcept C159467904 @default.
- W2599535880 hasConcept C159985019 @default.
- W2599535880 hasConcept C178790620 @default.
- W2599535880 hasConcept C185592680 @default.
- W2599535880 hasConcept C192562407 @default.
- W2599535880 hasConcept C19499675 @default.
- W2599535880 hasConcept C199360897 @default.
- W2599535880 hasConcept C203036418 @default.
- W2599535880 hasConcept C2182769 @default.
- W2599535880 hasConcept C26456737 @default.
- W2599535880 hasConcept C2781162219 @default.
- W2599535880 hasConcept C2781285689 @default.
- W2599535880 hasConcept C33923547 @default.
- W2599535880 hasConcept C41008148 @default.
- W2599535880 hasConcept C45786274 @default.
- W2599535880 hasConcept C6648577 @default.
- W2599535880 hasConcept C79191725 @default.
- W2599535880 hasConcept C8010536 @default.
- W2599535880 hasConcept C97355855 @default.
- W2599535880 hasConceptScore W2599535880C105569014 @default.
- W2599535880 hasConceptScore W2599535880C105795698 @default.