Matches in SemOpenAlex for { <https://semopenalex.org/work/W2599625238> ?p ?o ?g. }
- W2599625238 abstract "In this paper, we describe a surprising link between the theory of the Goldman-Turaev Lie bialgebra on surfaces of genus zero and the Kashiwara-Vergne (KV) problem in Lie theory. Let $Sigma$ be an oriented 2-dimensional manifold with non-empty boundary and $mathbb{K}$ a field of characteristic zero. The Goldman-Turaev Lie bialgebra is defined by the Goldman bracket ${ -,- }$ and Turaev cobracket $delta$ on the $mathbb{K}$-span of homotopy classes of free loops on $Sigma$. Applying an expansion $theta: mathbb{K}pi to mathbb{K}langle x_1, dots, x_n rangle$ yields an algebraic description of the operations ${ -,- }$ and $delta$ in terms of non-commutative variables $x_1, dots, x_n$. If $Sigma$ is a surface of genus $g=0$ the lowest degree parts ${ -,- }_{-1}$ and $delta_{-1}$ are canonically defined (and independent of $theta$). They define a Lie bialgebra structure on the space of cyclic words which was introduced and studied by T. Schedler. It was conjectured by the second and the third authors that one can define an expansion $theta$ such that ${ -,- }={ -,- }_{-1}$ and $delta=delta_{-1}$. The main result of this paper states that for surfaces of genus zero constructing such an expansion is essentially equivalent to the KV problem. G. Massuyeau constructed such expansions using the Kontsevich integral. In order to prove this result, we show that the Turaev cobracket $delta$ can be constructed in terms of the double bracket (upgrading the Goldman bracket) and the non-commutative divergence cocycle which plays the central role in the KV theory. Among other things, this observation gives a new topological interpretation of the KV problem and allows to extend it to surfaces with arbitrary number of boundary components (and of arbitrary genus, see [C. R. Acad. Sci. Paris, Ser. I 355 (2017), 123--127])." @default.
- W2599625238 created "2017-04-07" @default.
- W2599625238 creator A5009900773 @default.
- W2599625238 creator A5015112450 @default.
- W2599625238 creator A5021077868 @default.
- W2599625238 creator A5042713027 @default.
- W2599625238 date "2017-03-16" @default.
- W2599625238 modified "2023-10-01" @default.
- W2599625238 title "The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem" @default.
- W2599625238 cites W1506226245 @default.
- W2599625238 cites W1653024278 @default.
- W2599625238 cites W1821776218 @default.
- W2599625238 cites W1977483478 @default.
- W2599625238 cites W2032609829 @default.
- W2599625238 cites W2043063495 @default.
- W2599625238 cites W2043232165 @default.
- W2599625238 cites W2044389549 @default.
- W2599625238 cites W2050690328 @default.
- W2599625238 cites W2061630914 @default.
- W2599625238 cites W2068740399 @default.
- W2599625238 cites W2079112499 @default.
- W2599625238 cites W2090359466 @default.
- W2599625238 cites W2125748670 @default.
- W2599625238 cites W2153521840 @default.
- W2599625238 cites W2215890458 @default.
- W2599625238 cites W2511081941 @default.
- W2599625238 cites W2562960922 @default.
- W2599625238 cites W2962872689 @default.
- W2599625238 cites W2962965607 @default.
- W2599625238 cites W2964329607 @default.
- W2599625238 cites W3037983013 @default.
- W2599625238 cites W619579812 @default.
- W2599625238 cites W3151048661 @default.
- W2599625238 hasPublicationYear "2017" @default.
- W2599625238 type Work @default.
- W2599625238 sameAs 2599625238 @default.
- W2599625238 citedByCount "1" @default.
- W2599625238 countsByYear W25996252382017 @default.
- W2599625238 crossrefType "posted-content" @default.
- W2599625238 hasAuthorship W2599625238A5009900773 @default.
- W2599625238 hasAuthorship W2599625238A5015112450 @default.
- W2599625238 hasAuthorship W2599625238A5021077868 @default.
- W2599625238 hasAuthorship W2599625238A5042713027 @default.
- W2599625238 hasConcept C10138342 @default.
- W2599625238 hasConcept C114614502 @default.
- W2599625238 hasConcept C127413603 @default.
- W2599625238 hasConcept C133769200 @default.
- W2599625238 hasConcept C136119220 @default.
- W2599625238 hasConcept C138885662 @default.
- W2599625238 hasConcept C143135876 @default.
- W2599625238 hasConcept C157369684 @default.
- W2599625238 hasConcept C162324750 @default.
- W2599625238 hasConcept C182306322 @default.
- W2599625238 hasConcept C183778304 @default.
- W2599625238 hasConcept C183877218 @default.
- W2599625238 hasConcept C202444582 @default.
- W2599625238 hasConcept C2778676360 @default.
- W2599625238 hasConcept C2780813799 @default.
- W2599625238 hasConcept C29712632 @default.
- W2599625238 hasConcept C33923547 @default.
- W2599625238 hasConcept C41895202 @default.
- W2599625238 hasConcept C5106717 @default.
- W2599625238 hasConcept C51568863 @default.
- W2599625238 hasConcept C59822182 @default.
- W2599625238 hasConcept C78519656 @default.
- W2599625238 hasConcept C86803240 @default.
- W2599625238 hasConceptScore W2599625238C10138342 @default.
- W2599625238 hasConceptScore W2599625238C114614502 @default.
- W2599625238 hasConceptScore W2599625238C127413603 @default.
- W2599625238 hasConceptScore W2599625238C133769200 @default.
- W2599625238 hasConceptScore W2599625238C136119220 @default.
- W2599625238 hasConceptScore W2599625238C138885662 @default.
- W2599625238 hasConceptScore W2599625238C143135876 @default.
- W2599625238 hasConceptScore W2599625238C157369684 @default.
- W2599625238 hasConceptScore W2599625238C162324750 @default.
- W2599625238 hasConceptScore W2599625238C182306322 @default.
- W2599625238 hasConceptScore W2599625238C183778304 @default.
- W2599625238 hasConceptScore W2599625238C183877218 @default.
- W2599625238 hasConceptScore W2599625238C202444582 @default.
- W2599625238 hasConceptScore W2599625238C2778676360 @default.
- W2599625238 hasConceptScore W2599625238C2780813799 @default.
- W2599625238 hasConceptScore W2599625238C29712632 @default.
- W2599625238 hasConceptScore W2599625238C33923547 @default.
- W2599625238 hasConceptScore W2599625238C41895202 @default.
- W2599625238 hasConceptScore W2599625238C5106717 @default.
- W2599625238 hasConceptScore W2599625238C51568863 @default.
- W2599625238 hasConceptScore W2599625238C59822182 @default.
- W2599625238 hasConceptScore W2599625238C78519656 @default.
- W2599625238 hasConceptScore W2599625238C86803240 @default.
- W2599625238 hasLocation W25996252381 @default.
- W2599625238 hasOpenAccess W2599625238 @default.
- W2599625238 hasPrimaryLocation W25996252381 @default.
- W2599625238 hasRelatedWork W1532654077 @default.
- W2599625238 hasRelatedWork W1547558892 @default.
- W2599625238 hasRelatedWork W1630371641 @default.
- W2599625238 hasRelatedWork W1762970948 @default.
- W2599625238 hasRelatedWork W1890016683 @default.
- W2599625238 hasRelatedWork W1968342700 @default.
- W2599625238 hasRelatedWork W2144681471 @default.
- W2599625238 hasRelatedWork W2950265977 @default.