Matches in SemOpenAlex for { <https://semopenalex.org/work/W2599632008> ?p ?o ?g. }
- W2599632008 endingPage "1829" @default.
- W2599632008 startingPage "1816" @default.
- W2599632008 abstract "Finger-vein biometrics has been extensively investigated for personal verification. Despite recent advances in finger-vein verification, current solutions completely depend on domain knowledge and still lack the robustness to extract finger-vein features from raw images. This paper proposes a deep learning model to extract and recover vein features using limited a priori knowledge. First, based on a combination of the known state-of-the-art handcrafted finger-vein image segmentation techniques, we automatically identify two regions: a clear region with high separability between finger-vein patterns and background, and an ambiguous region with low separability between them. The first is associated with pixels on which all the above-mentioned segmentation techniques assign the same segmentation label (either foreground or background), while the second corresponds to all the remaining pixels. This scheme is used to automatically discard the ambiguous region and to label the pixels of the clear region as foreground or background. A training data set is constructed based on the patches centered on the labeled pixels. Second, a convolutional neural network (CNN) is trained on the resulting data set to predict the probability of each pixel of being foreground (i.e., vein pixel), given a patch centered on it. The CNN learns what a finger-vein pattern is by learning the difference between vein patterns and background ones. The pixels in any region of a test image can then be classified effectively. Third, we propose another new and original contribution by developing and investigating a fully convolutional network to recover missing finger-vein patterns in the segmented image. The experimental results on two public finger-vein databases show a significant improvement in terms of finger-vein verification accuracy." @default.
- W2599632008 created "2017-04-07" @default.
- W2599632008 creator A5038934826 @default.
- W2599632008 creator A5054571269 @default.
- W2599632008 date "2017-08-01" @default.
- W2599632008 modified "2023-10-13" @default.
- W2599632008 title "Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification" @default.
- W2599632008 cites W1950843348 @default.
- W2599632008 cites W1963920031 @default.
- W2599632008 cites W1974821667 @default.
- W2599632008 cites W1991620112 @default.
- W2599632008 cites W1995562189 @default.
- W2599632008 cites W1997175872 @default.
- W2599632008 cites W2004617923 @default.
- W2599632008 cites W2014470493 @default.
- W2599632008 cites W2032476112 @default.
- W2599632008 cites W2038924852 @default.
- W2599632008 cites W2039004170 @default.
- W2599632008 cites W2058362416 @default.
- W2599632008 cites W2068999607 @default.
- W2599632008 cites W2078740505 @default.
- W2599632008 cites W2080562729 @default.
- W2599632008 cites W2082526668 @default.
- W2599632008 cites W2096540110 @default.
- W2599632008 cites W2097418325 @default.
- W2599632008 cites W2098693229 @default.
- W2599632008 cites W2102780391 @default.
- W2599632008 cites W2108069432 @default.
- W2599632008 cites W2118323481 @default.
- W2599632008 cites W2119416456 @default.
- W2599632008 cites W2122790104 @default.
- W2599632008 cites W2132424367 @default.
- W2599632008 cites W2138460174 @default.
- W2599632008 cites W2142765153 @default.
- W2599632008 cites W2145287260 @default.
- W2599632008 cites W2146148372 @default.
- W2599632008 cites W2166524747 @default.
- W2599632008 cites W2169805405 @default.
- W2599632008 cites W3101824741 @default.
- W2599632008 cites W4246794637 @default.
- W2599632008 doi "https://doi.org/10.1109/tifs.2017.2689724" @default.
- W2599632008 hasPublicationYear "2017" @default.
- W2599632008 type Work @default.
- W2599632008 sameAs 2599632008 @default.
- W2599632008 citedByCount "152" @default.
- W2599632008 countsByYear W25996320082017 @default.
- W2599632008 countsByYear W25996320082018 @default.
- W2599632008 countsByYear W25996320082019 @default.
- W2599632008 countsByYear W25996320082020 @default.
- W2599632008 countsByYear W25996320082021 @default.
- W2599632008 countsByYear W25996320082022 @default.
- W2599632008 countsByYear W25996320082023 @default.
- W2599632008 crossrefType "journal-article" @default.
- W2599632008 hasAuthorship W2599632008A5038934826 @default.
- W2599632008 hasAuthorship W2599632008A5054571269 @default.
- W2599632008 hasBestOaLocation W25996320082 @default.
- W2599632008 hasConcept C124101348 @default.
- W2599632008 hasConcept C138885662 @default.
- W2599632008 hasConcept C153180895 @default.
- W2599632008 hasConcept C154945302 @default.
- W2599632008 hasConcept C17744445 @default.
- W2599632008 hasConcept C199539241 @default.
- W2599632008 hasConcept C2776359362 @default.
- W2599632008 hasConcept C2776401178 @default.
- W2599632008 hasConcept C31972630 @default.
- W2599632008 hasConcept C41008148 @default.
- W2599632008 hasConcept C41895202 @default.
- W2599632008 hasConcept C52622490 @default.
- W2599632008 hasConcept C94625758 @default.
- W2599632008 hasConceptScore W2599632008C124101348 @default.
- W2599632008 hasConceptScore W2599632008C138885662 @default.
- W2599632008 hasConceptScore W2599632008C153180895 @default.
- W2599632008 hasConceptScore W2599632008C154945302 @default.
- W2599632008 hasConceptScore W2599632008C17744445 @default.
- W2599632008 hasConceptScore W2599632008C199539241 @default.
- W2599632008 hasConceptScore W2599632008C2776359362 @default.
- W2599632008 hasConceptScore W2599632008C2776401178 @default.
- W2599632008 hasConceptScore W2599632008C31972630 @default.
- W2599632008 hasConceptScore W2599632008C41008148 @default.
- W2599632008 hasConceptScore W2599632008C41895202 @default.
- W2599632008 hasConceptScore W2599632008C52622490 @default.
- W2599632008 hasConceptScore W2599632008C94625758 @default.
- W2599632008 hasFunder F4320321001 @default.
- W2599632008 hasFunder F4320322685 @default.
- W2599632008 hasFunder F4320323172 @default.
- W2599632008 hasIssue "8" @default.
- W2599632008 hasLocation W25996320081 @default.
- W2599632008 hasLocation W25996320082 @default.
- W2599632008 hasLocation W25996320083 @default.
- W2599632008 hasOpenAccess W2599632008 @default.
- W2599632008 hasPrimaryLocation W25996320081 @default.
- W2599632008 hasRelatedWork W1504288058 @default.
- W2599632008 hasRelatedWork W2016461833 @default.
- W2599632008 hasRelatedWork W2102575890 @default.
- W2599632008 hasRelatedWork W2146076056 @default.
- W2599632008 hasRelatedWork W2167293474 @default.
- W2599632008 hasRelatedWork W2331674254 @default.
- W2599632008 hasRelatedWork W2382607599 @default.