Matches in SemOpenAlex for { <https://semopenalex.org/work/W2599685345> ?p ?o ?g. }
- W2599685345 abstract "Author(s): Wang, Gang | Advisor(s): Zhao, Ben Y; Zheng, Haitao | Abstract: Internet users today are connected more widely and ubiquitously than ever before. As a result, various online communities are formed, ranging from online social networks (Facebook, Twitter), to mobile communities (Foursquare, Waze), to content/interests based networks (Wikipedia, Yelp, Quora). While users are benefiting from the ease of access to information and social interactions, there is a growing concern for users' security and privacy against various attacks such as spam, phishing, malware infection and identity theft. Combating attacks and abuse in online communities is challenging. First, today’s online communities are increasingly dependent on users and user-generated content. Securing online systems demands a deep understanding of the complex and often unpredictable behaviors. Second, online communities can easily have millions or even billions of users, which requires the corresponding security mechanisms to be highly scalable. Finally, cybercriminals are constantly evolving to launch new types of attacks. This further demands high robustness of security defenses. In this thesis, we take concrete steps towards measuring, understanding, and defending against attacks and abuse in online communities. We begin with a series of empirical measurements to understand user behaviors in different online services and the uniquesecurity and privacy challenges that users are facing with. This effort covers a broad set of popular online services including social networks for question and answering (Quora), anonymous social networks (Whisper), and crowdsourced mobile communities (Waze). Despite the differences of specific online communities, our study provides a first look at their user activity patterns based on empirical data, and reveals the need for reliable mechanisms to curate user content, protect privacy, and defend against emerging attacks. Next, we turn our attention to attacks targeting online communities, with focus on spam campaigns. While traditional spam is mostly generated by automated software, attackers today start to introduce human intelligence to implement attacks. This is maliciouscrowdsourcing (or crowdturfing) where a large group of real-users are organized to carry out malicious campaigns, such as writing fake reviews or spreading rumors on social media. Using collective efforts, attackers can easily bypass many existing defenses (e.g.,CAPTCHA). To understand the ecosystem of crowdturfing, we first use measurements to examine their detailed campaign organization, workers and revenue. Based on insights from empirical data, we develop effective machine learning classifiers to detect crowdturfingactivities. In the meantime, considering the adversarial nature of crowdturfing, we also build practical adversarial models to simulate how attackers can evade or disrupt machine learning based defenses. To aid in this effort, we next explore using user behavior models to detect a wider range of attacks. Instead of making assumptions about attacker behavior, our idea is to model normal user behaviors and capture (malicious) behaviors that are deviated from norm. In this way, we can detect previously unknown attacks. Our behavior model is based on detailed clickstream data, which are sequences of click events generated by users when using the service. We build a similarity graph where each user is a node and the edges are weightedby clickstream similarity. By partitioning this graph, we obtain of users with similar behaviors. We then use a small set of known good users to color these clusters to differentiate the malicious ones. This technique has been adopted by real-world social networks (Renren and LinkedIn), and already detected unexpected attacks. Finally, we extend clickstream model to understanding more-grained behaviors of attackers (and real users), and tracking how user behavior changes over time. In summary, this thesis illustrates a data-driven approach to understanding and defending against attacks and abuse in online communities. Our measurements have revealed new insights about how attackers are evolving to bypass existing security defenses today. Inaddition, our data-driven systems provide new solutions for online services to gain a deep understanding of their users, and defend them from emerging attacks and abuse." @default.
- W2599685345 created "2017-04-07" @default.
- W2599685345 creator A5030921116 @default.
- W2599685345 date "2016-01-01" @default.
- W2599685345 modified "2023-09-26" @default.
- W2599685345 title "Combating Attacks and Abuse in Large Online Communities" @default.
- W2599685345 cites W1149893533 @default.
- W2599685345 cites W1233141674 @default.
- W2599685345 cites W127585952 @default.
- W2599685345 cites W1512098439 @default.
- W2599685345 cites W1520914943 @default.
- W2599685345 cites W1551760018 @default.
- W2599685345 cites W1577841485 @default.
- W2599685345 cites W1587819022 @default.
- W2599685345 cites W1589713274 @default.
- W2599685345 cites W1594207996 @default.
- W2599685345 cites W1605925311 @default.
- W2599685345 cites W1671965234 @default.
- W2599685345 cites W1721821109 @default.
- W2599685345 cites W1730818938 @default.
- W2599685345 cites W1747743061 @default.
- W2599685345 cites W1781642226 @default.
- W2599685345 cites W1814023381 @default.
- W2599685345 cites W1815362064 @default.
- W2599685345 cites W1882350379 @default.
- W2599685345 cites W1893161742 @default.
- W2599685345 cites W1912123407 @default.
- W2599685345 cites W1916595307 @default.
- W2599685345 cites W1922737625 @default.
- W2599685345 cites W1973556323 @default.
- W2599685345 cites W1977556410 @default.
- W2599685345 cites W1977991182 @default.
- W2599685345 cites W1985987493 @default.
- W2599685345 cites W1986262965 @default.
- W2599685345 cites W1986678144 @default.
- W2599685345 cites W1987117885 @default.
- W2599685345 cites W1987221145 @default.
- W2599685345 cites W1988943457 @default.
- W2599685345 cites W1991286487 @default.
- W2599685345 cites W1992889781 @default.
- W2599685345 cites W1996434443 @default.
- W2599685345 cites W2004951603 @default.
- W2599685345 cites W2005002286 @default.
- W2599685345 cites W2007562169 @default.
- W2599685345 cites W2008620264 @default.
- W2599685345 cites W2011366667 @default.
- W2599685345 cites W2020912672 @default.
- W2599685345 cites W202178741 @default.
- W2599685345 cites W2025895610 @default.
- W2599685345 cites W2031788415 @default.
- W2599685345 cites W2032695641 @default.
- W2599685345 cites W2032779105 @default.
- W2599685345 cites W2036226015 @default.
- W2599685345 cites W2038044720 @default.
- W2599685345 cites W2039722754 @default.
- W2599685345 cites W2040956707 @default.
- W2599685345 cites W2042408065 @default.
- W2599685345 cites W2044240216 @default.
- W2599685345 cites W2045057497 @default.
- W2599685345 cites W2045234005 @default.
- W2599685345 cites W2047756776 @default.
- W2599685345 cites W2050842588 @default.
- W2599685345 cites W2054706300 @default.
- W2599685345 cites W2056273964 @default.
- W2599685345 cites W2056773559 @default.
- W2599685345 cites W2057415299 @default.
- W2599685345 cites W2063771604 @default.
- W2599685345 cites W2068138600 @default.
- W2599685345 cites W2072646194 @default.
- W2599685345 cites W2074835059 @default.
- W2599685345 cites W2086320398 @default.
- W2599685345 cites W2088612179 @default.
- W2599685345 cites W2092277251 @default.
- W2599685345 cites W2094736127 @default.
- W2599685345 cites W2098395374 @default.
- W2599685345 cites W2098515641 @default.
- W2599685345 cites W2099769844 @default.
- W2599685345 cites W2100140991 @default.
- W2599685345 cites W2101196063 @default.
- W2599685345 cites W2101890615 @default.
- W2599685345 cites W2102016010 @default.
- W2599685345 cites W2102710958 @default.
- W2599685345 cites W2102956348 @default.
- W2599685345 cites W2103033197 @default.
- W2599685345 cites W2103133870 @default.
- W2599685345 cites W2106441507 @default.
- W2599685345 cites W2106777765 @default.
- W2599685345 cites W2108214308 @default.
- W2599685345 cites W2108836391 @default.
- W2599685345 cites W2110903679 @default.
- W2599685345 cites W2111141603 @default.
- W2599685345 cites W2112090702 @default.
- W2599685345 cites W2114269021 @default.
- W2599685345 cites W2115022330 @default.
- W2599685345 cites W2115240023 @default.
- W2599685345 cites W2116875384 @default.
- W2599685345 cites W2117410972 @default.
- W2599685345 cites W2118557062 @default.
- W2599685345 cites W2119479037 @default.
- W2599685345 cites W2121761994 @default.