Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600318314> ?p ?o ?g. }
- W2600318314 endingPage "143" @default.
- W2600318314 startingPage "130" @default.
- W2600318314 abstract "Quality analysis and prediction have been of great significance to ensure consistent and high product quality for chemical engineering processes. However, previous methods have rarely analyzed the cumulative quality effect which is of typical nature for batch processes. That is, with time development, the process variation will determine the final product quality in a cumulative manner. Besides, they cannot get an early sense of the quality nature. In this paper, a quantitative index is defined which can check ahead of time whether the product quality result from accumulation or the addition of successive process variations and cumulative quality effect will be addressed for quality analysis and prediction of batch processes. Several crucial issues will be solved to explore the cumulative quality effect. First, a quality-relevant sequential phase partition method is proposed to separate multiple phases from batch processes by using fast search and find of density peaks clustering (FSFDP) algorithm. Second, after phase partition, a phase-wise cumulative quality analysis method is proposed based on subspace decomposition which can explore the non-repetitive quality-relevant information (NRQRI) from the process variation at each time within each phase. NRQRI refers to the quality-relevant process variations at each time that are orthogonal to those of previous time and thus represents complementary quality information which is the key index to cumulatively explain quality variations time-wise. Third, process-wise cumulative quality analysis is conducted where a critical phase selection strategy is developed to identify critical-to-cumulative-quality phases and quality predictions from critical phases are integrated to exclude influences of uncritical phases. By the two-level cumulative quality analysis (i.e., phase-wise and process-wise), it is feasible to judge whether the quality has the cumulative effect in advance and thus proper quality prediction model can be developed by identifying critical-to-cumulative-quality phases. The feasibility and performance of the proposed algorithm are illustrated by a typical chemical engineering process, injection molding." @default.
- W2600318314 created "2017-04-07" @default.
- W2600318314 creator A5002154840 @default.
- W2600318314 creator A5038929132 @default.
- W2600318314 creator A5039672243 @default.
- W2600318314 creator A5064860911 @default.
- W2600318314 date "2017-07-01" @default.
- W2600318314 modified "2023-10-16" @default.
- W2600318314 title "Subspace decomposition and critical phase selection based cumulative quality analysis for multiphase batch processes" @default.
- W2600318314 cites W1541175366 @default.
- W2600318314 cites W1590747627 @default.
- W2600318314 cites W1981586857 @default.
- W2600318314 cites W1993476902 @default.
- W2600318314 cites W1994874261 @default.
- W2600318314 cites W1997588730 @default.
- W2600318314 cites W2010090846 @default.
- W2600318314 cites W2011742809 @default.
- W2600318314 cites W2016720955 @default.
- W2600318314 cites W2024622012 @default.
- W2600318314 cites W2033959448 @default.
- W2600318314 cites W2036160334 @default.
- W2600318314 cites W2039243482 @default.
- W2600318314 cites W2043842833 @default.
- W2600318314 cites W2046915666 @default.
- W2600318314 cites W2047138503 @default.
- W2600318314 cites W2063336979 @default.
- W2600318314 cites W2069546111 @default.
- W2600318314 cites W2069620465 @default.
- W2600318314 cites W2070515956 @default.
- W2600318314 cites W2074520246 @default.
- W2600318314 cites W2081843889 @default.
- W2600318314 cites W2086324137 @default.
- W2600318314 cites W2089468765 @default.
- W2600318314 cites W2131919105 @default.
- W2600318314 cites W2153490473 @default.
- W2600318314 cites W2160624440 @default.
- W2600318314 cites W2164150378 @default.
- W2600318314 cites W2165835468 @default.
- W2600318314 cites W2168715542 @default.
- W2600318314 cites W2297211541 @default.
- W2600318314 cites W2441266639 @default.
- W2600318314 cites W2552112078 @default.
- W2600318314 cites W2561662420 @default.
- W2600318314 cites W4232421753 @default.
- W2600318314 doi "https://doi.org/10.1016/j.ces.2017.03.033" @default.
- W2600318314 hasPublicationYear "2017" @default.
- W2600318314 type Work @default.
- W2600318314 sameAs 2600318314 @default.
- W2600318314 citedByCount "23" @default.
- W2600318314 countsByYear W26003183142017 @default.
- W2600318314 countsByYear W26003183142018 @default.
- W2600318314 countsByYear W26003183142019 @default.
- W2600318314 countsByYear W26003183142020 @default.
- W2600318314 countsByYear W26003183142021 @default.
- W2600318314 countsByYear W26003183142022 @default.
- W2600318314 crossrefType "journal-article" @default.
- W2600318314 hasAuthorship W2600318314A5002154840 @default.
- W2600318314 hasAuthorship W2600318314A5038929132 @default.
- W2600318314 hasAuthorship W2600318314A5039672243 @default.
- W2600318314 hasAuthorship W2600318314A5064860911 @default.
- W2600318314 hasBestOaLocation W26003183142 @default.
- W2600318314 hasConcept C103784038 @default.
- W2600318314 hasConcept C105795698 @default.
- W2600318314 hasConcept C111472728 @default.
- W2600318314 hasConcept C111919701 @default.
- W2600318314 hasConcept C114614502 @default.
- W2600318314 hasConcept C124101348 @default.
- W2600318314 hasConcept C124681953 @default.
- W2600318314 hasConcept C127413603 @default.
- W2600318314 hasConcept C138885662 @default.
- W2600318314 hasConcept C154945302 @default.
- W2600318314 hasConcept C178790620 @default.
- W2600318314 hasConcept C185592680 @default.
- W2600318314 hasConcept C197055811 @default.
- W2600318314 hasConcept C200601418 @default.
- W2600318314 hasConcept C2779530757 @default.
- W2600318314 hasConcept C32834561 @default.
- W2600318314 hasConcept C33923547 @default.
- W2600318314 hasConcept C41008148 @default.
- W2600318314 hasConcept C42812 @default.
- W2600318314 hasConcept C98045186 @default.
- W2600318314 hasConceptScore W2600318314C103784038 @default.
- W2600318314 hasConceptScore W2600318314C105795698 @default.
- W2600318314 hasConceptScore W2600318314C111472728 @default.
- W2600318314 hasConceptScore W2600318314C111919701 @default.
- W2600318314 hasConceptScore W2600318314C114614502 @default.
- W2600318314 hasConceptScore W2600318314C124101348 @default.
- W2600318314 hasConceptScore W2600318314C124681953 @default.
- W2600318314 hasConceptScore W2600318314C127413603 @default.
- W2600318314 hasConceptScore W2600318314C138885662 @default.
- W2600318314 hasConceptScore W2600318314C154945302 @default.
- W2600318314 hasConceptScore W2600318314C178790620 @default.
- W2600318314 hasConceptScore W2600318314C185592680 @default.
- W2600318314 hasConceptScore W2600318314C197055811 @default.
- W2600318314 hasConceptScore W2600318314C200601418 @default.
- W2600318314 hasConceptScore W2600318314C2779530757 @default.
- W2600318314 hasConceptScore W2600318314C32834561 @default.
- W2600318314 hasConceptScore W2600318314C33923547 @default.