Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600403765> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2600403765 abstract "In astronautics, an important issue is to control the motion of a satellite subject to the gravitation of celestial bodies in such a way that certain performance indices are minimized (or maximized). In the thesis, we are interested in minimizing the L¹-norm of control for the circular restricted three-body problem. The necessary conditions for optimality are derived by using the Pontryagin maximum principle, revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, and the Fuller phenomenon shows up according to the theories developed by Marchal [1] and Zelikin et al. [2, 3]. The controllability for the controlled two-body problem (a degenerate case of the circular restricted three-body problem) with control taking values in a Euclidean ball is addressed first (cf. Chapter 2). The controllability result is readily extended to the three-body problem since the drift vector field of the three-body problem is recurrent. As a result, if the admissible controlled trajectories remain in a fixed compact set, the existence of the solutions of the L¹-minimizaion problem can be obtained by a combination of Filippov theorem (see [4, Chapter 10], e.g.) and a suitable convexification procedure (see, e.g., [5]). In finite dimensions, the L¹-minimization problem is well-known to generate solutions where the control vanishes on some time intervals. While the Pontryagin maximum principle is a powerful tool to identify candidate solutions for L1-minimization problem, it cannot guarantee that the these candidates are at least locally optimal unless sufficient optimality conditions are satisfied. Indeed, it is a prerequisite to establish (as well as to be able to verify) the necessary and sufficient optimality conditions in order to solve the L¹-minimization problem. In this thesis, the crucial idea for establishing such conditions is to construct a parameterized family of extremals such that the reference extremal can be embedded into a field of extremals. Two no-fold conditions for the canonical projection of the parameterized family of extremals are devised. For the scenario of fixed endpoints, these no-fold conditions are sufficient to guarantee that the reference extremal is locally minimizing provided that each switching point is regular (cf. Chapter 3). If the terminal point is not fixed but varies on a smooth submanifold, an extra sufficient condition involving the geometry of the target manifold is established (cf. Chapter 4). Although various numerical methods, including the ones categorized as direct [6, 7], in- direct [5, 8, 9], and hybrid [10], in the literature are able to compute optimal solutions, one cannot expect a satellite steered by the precomputed optimal control (or nominal control) to move on the precomputed optimal trajectory (or nominal trajectory) due to unavoidable perturbations and errors. In order to avoid recomputing a new optimal trajectory once a deviation from the nominal trajectory occurs, the neighboring optimal feedback control, which is probably the most important practical application of optimal control theory [11, Chapter 5], is derived by parameterizing the neighboring extremals around the nominal one (cf. Chapter 5). Since the optimal control function is bang-bang, the neighboring optimal control consists of not only the feedback on thrust direction but also that on switching times. Moreover, a geometric analysis shows that it is impossible to construct the neighboring optimal control once a conjugate point occurs either between or at switching times." @default.
- W2600403765 created "2017-04-07" @default.
- W2600403765 creator A5032769690 @default.
- W2600403765 date "2016-09-14" @default.
- W2600403765 modified "2023-09-27" @default.
- W2600403765 title "L¹-Minimization for Space Mechanics" @default.
- W2600403765 cites W148202061 @default.
- W2600403765 cites W1484739396 @default.
- W2600403765 cites W2034079759 @default.
- W2600403765 cites W2136322100 @default.
- W2600403765 cites W2996339364 @default.
- W2600403765 hasPublicationYear "2016" @default.
- W2600403765 type Work @default.
- W2600403765 sameAs 2600403765 @default.
- W2600403765 citedByCount "0" @default.
- W2600403765 crossrefType "dissertation" @default.
- W2600403765 hasAuthorship W2600403765A5032769690 @default.
- W2600403765 hasConcept C126255220 @default.
- W2600403765 hasConcept C134306372 @default.
- W2600403765 hasConcept C147764199 @default.
- W2600403765 hasConcept C17744445 @default.
- W2600403765 hasConcept C191795146 @default.
- W2600403765 hasConcept C199539241 @default.
- W2600403765 hasConcept C2777984672 @default.
- W2600403765 hasConcept C28826006 @default.
- W2600403765 hasConcept C31010330 @default.
- W2600403765 hasConcept C33923547 @default.
- W2600403765 hasConcept C48209547 @default.
- W2600403765 hasConcept C91575142 @default.
- W2600403765 hasConceptScore W2600403765C126255220 @default.
- W2600403765 hasConceptScore W2600403765C134306372 @default.
- W2600403765 hasConceptScore W2600403765C147764199 @default.
- W2600403765 hasConceptScore W2600403765C17744445 @default.
- W2600403765 hasConceptScore W2600403765C191795146 @default.
- W2600403765 hasConceptScore W2600403765C199539241 @default.
- W2600403765 hasConceptScore W2600403765C2777984672 @default.
- W2600403765 hasConceptScore W2600403765C28826006 @default.
- W2600403765 hasConceptScore W2600403765C31010330 @default.
- W2600403765 hasConceptScore W2600403765C33923547 @default.
- W2600403765 hasConceptScore W2600403765C48209547 @default.
- W2600403765 hasConceptScore W2600403765C91575142 @default.
- W2600403765 hasLocation W26004037651 @default.
- W2600403765 hasOpenAccess W2600403765 @default.
- W2600403765 hasPrimaryLocation W26004037651 @default.
- W2600403765 hasRelatedWork W1549465925 @default.
- W2600403765 hasRelatedWork W1964670762 @default.
- W2600403765 hasRelatedWork W1967728777 @default.
- W2600403765 hasRelatedWork W1970185089 @default.
- W2600403765 hasRelatedWork W2035580924 @default.
- W2600403765 hasRelatedWork W2077987002 @default.
- W2600403765 hasRelatedWork W2096544641 @default.
- W2600403765 hasRelatedWork W2152477131 @default.
- W2600403765 hasRelatedWork W2152541732 @default.
- W2600403765 hasRelatedWork W2177339854 @default.
- W2600403765 hasRelatedWork W2196850425 @default.
- W2600403765 hasRelatedWork W2254032034 @default.
- W2600403765 hasRelatedWork W2404587230 @default.
- W2600403765 hasRelatedWork W2467647287 @default.
- W2600403765 hasRelatedWork W2763345679 @default.
- W2600403765 hasRelatedWork W2794048235 @default.
- W2600403765 hasRelatedWork W2940673917 @default.
- W2600403765 hasRelatedWork W3011752465 @default.
- W2600403765 hasRelatedWork W34659449 @default.
- W2600403765 hasRelatedWork W70141008 @default.
- W2600403765 isParatext "false" @default.
- W2600403765 isRetracted "false" @default.
- W2600403765 magId "2600403765" @default.
- W2600403765 workType "dissertation" @default.