Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600453423> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2600453423 abstract "In the modern world, due to advancement and outreach of technology, ease of access to any kind of product or service is growing immensely. Subjective attitude (i.e. Sentiment) ranging from that of products, news, movies to that of social networking mediums is being given for each and every product now-a-days. The market now, not only values the expert opinion but the reviews of masses have taken an equal importance as they are the one using the products and services. For the betterment of products, the input must be understood and the data must be analyzed by proper Machine Learning techniques along with Natural Language Processing in order to draw the conclusions and comprehending the overall situation. The topic-based text classification based on the Bag-of-Words model has some fundamental inadequacies, although various algorithms and classifiers (like naive Bayes, support vector machines) are already analyzing sentiments and giving categorical feedback as a generic output. Polarity shift problem restricts the performance of these existing models. To address this problem for sentiment classification, Dual sentiment analysis (DSA) has been expanded from a 2 facet classification to a 3 facet classification which considers neutral reviews from the dataset as well for better accuracy and understanding. For each training and test review, a novel data expansion technique is being proposed that will use opposite class labels of positive and negative sentiments in one to one correspondence for a dual training and dual prediction algorithm. A corpus method based pseudo-antonym dictionary has also been proposed to remove the single language (English) based restriction and to maintain domain consistency as it will be pairing up words on the basis of sentiment strength. Keywords- Natural Language Processing, Bag-of-Words, Machine Learning, Dual Sentiment Analysis, Opinion mining, Naive Bayes, Support Vector Machines, Dataset, Polarity shift, Corpus Method" @default.
- W2600453423 created "2017-04-07" @default.
- W2600453423 creator A5018508459 @default.
- W2600453423 creator A5074987941 @default.
- W2600453423 date "2017-03-23" @default.
- W2600453423 modified "2023-09-23" @default.
- W2600453423 title "New Avenues in opinion mining: Considering Dual Sentiment Analysis" @default.
- W2600453423 hasPublicationYear "2017" @default.
- W2600453423 type Work @default.
- W2600453423 sameAs 2600453423 @default.
- W2600453423 citedByCount "0" @default.
- W2600453423 crossrefType "journal-article" @default.
- W2600453423 hasAuthorship W2600453423A5018508459 @default.
- W2600453423 hasAuthorship W2600453423A5074987941 @default.
- W2600453423 hasConcept C119857082 @default.
- W2600453423 hasConcept C12267149 @default.
- W2600453423 hasConcept C136264566 @default.
- W2600453423 hasConcept C138885662 @default.
- W2600453423 hasConcept C154945302 @default.
- W2600453423 hasConcept C15744967 @default.
- W2600453423 hasConcept C162324750 @default.
- W2600453423 hasConcept C17744445 @default.
- W2600453423 hasConcept C187288502 @default.
- W2600453423 hasConcept C199539241 @default.
- W2600453423 hasConcept C204321447 @default.
- W2600453423 hasConcept C2522767166 @default.
- W2600453423 hasConcept C2524010 @default.
- W2600453423 hasConcept C2777212361 @default.
- W2600453423 hasConcept C2780378061 @default.
- W2600453423 hasConcept C2780980858 @default.
- W2600453423 hasConcept C2781400479 @default.
- W2600453423 hasConcept C2865642 @default.
- W2600453423 hasConcept C33923547 @default.
- W2600453423 hasConcept C41008148 @default.
- W2600453423 hasConcept C41895202 @default.
- W2600453423 hasConcept C43122875 @default.
- W2600453423 hasConcept C52001869 @default.
- W2600453423 hasConcept C5274069 @default.
- W2600453423 hasConcept C66402592 @default.
- W2600453423 hasConcept C77805123 @default.
- W2600453423 hasConcept C90673727 @default.
- W2600453423 hasConceptScore W2600453423C119857082 @default.
- W2600453423 hasConceptScore W2600453423C12267149 @default.
- W2600453423 hasConceptScore W2600453423C136264566 @default.
- W2600453423 hasConceptScore W2600453423C138885662 @default.
- W2600453423 hasConceptScore W2600453423C154945302 @default.
- W2600453423 hasConceptScore W2600453423C15744967 @default.
- W2600453423 hasConceptScore W2600453423C162324750 @default.
- W2600453423 hasConceptScore W2600453423C17744445 @default.
- W2600453423 hasConceptScore W2600453423C187288502 @default.
- W2600453423 hasConceptScore W2600453423C199539241 @default.
- W2600453423 hasConceptScore W2600453423C204321447 @default.
- W2600453423 hasConceptScore W2600453423C2522767166 @default.
- W2600453423 hasConceptScore W2600453423C2524010 @default.
- W2600453423 hasConceptScore W2600453423C2777212361 @default.
- W2600453423 hasConceptScore W2600453423C2780378061 @default.
- W2600453423 hasConceptScore W2600453423C2780980858 @default.
- W2600453423 hasConceptScore W2600453423C2781400479 @default.
- W2600453423 hasConceptScore W2600453423C2865642 @default.
- W2600453423 hasConceptScore W2600453423C33923547 @default.
- W2600453423 hasConceptScore W2600453423C41008148 @default.
- W2600453423 hasConceptScore W2600453423C41895202 @default.
- W2600453423 hasConceptScore W2600453423C43122875 @default.
- W2600453423 hasConceptScore W2600453423C52001869 @default.
- W2600453423 hasConceptScore W2600453423C5274069 @default.
- W2600453423 hasConceptScore W2600453423C66402592 @default.
- W2600453423 hasConceptScore W2600453423C77805123 @default.
- W2600453423 hasConceptScore W2600453423C90673727 @default.
- W2600453423 hasIssue "03" @default.
- W2600453423 hasLocation W26004534231 @default.
- W2600453423 hasOpenAccess W2600453423 @default.
- W2600453423 hasPrimaryLocation W26004534231 @default.
- W2600453423 hasRelatedWork W1601266066 @default.
- W2600453423 hasRelatedWork W2401076195 @default.
- W2600453423 hasRelatedWork W2564433506 @default.
- W2600453423 hasRelatedWork W2600044323 @default.
- W2600453423 hasRelatedWork W2611231877 @default.
- W2600453423 hasRelatedWork W2623204011 @default.
- W2600453423 hasRelatedWork W2666029849 @default.
- W2600453423 hasRelatedWork W2741843760 @default.
- W2600453423 hasRelatedWork W2795413917 @default.
- W2600453423 hasRelatedWork W2885462405 @default.
- W2600453423 hasRelatedWork W2886160287 @default.
- W2600453423 hasRelatedWork W2890946202 @default.
- W2600453423 hasRelatedWork W2900796434 @default.
- W2600453423 hasRelatedWork W2902055846 @default.
- W2600453423 hasRelatedWork W2990361086 @default.
- W2600453423 hasRelatedWork W3091013922 @default.
- W2600453423 hasRelatedWork W3130783693 @default.
- W2600453423 hasRelatedWork W3133641909 @default.
- W2600453423 hasRelatedWork W3200983641 @default.
- W2600453423 hasRelatedWork W2763825844 @default.
- W2600453423 hasVolume "5" @default.
- W2600453423 isParatext "false" @default.
- W2600453423 isRetracted "false" @default.
- W2600453423 magId "2600453423" @default.
- W2600453423 workType "article" @default.