Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600481111> ?p ?o ?g. }
- W2600481111 endingPage "1350" @default.
- W2600481111 startingPage "1339" @default.
- W2600481111 abstract "BackgroundNewborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization.ObjectiveSmall-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs.MethodsChemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice.ResultsAlthough alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers.ConclusionTLR8 agonist–encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines. Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. TLR8 agonist–encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines." @default.
- W2600481111 created "2017-04-07" @default.
- W2600481111 creator A5005255746 @default.
- W2600481111 creator A5008497977 @default.
- W2600481111 creator A5019180077 @default.
- W2600481111 creator A5024058990 @default.
- W2600481111 creator A5024157568 @default.
- W2600481111 creator A5031517705 @default.
- W2600481111 creator A5035307518 @default.
- W2600481111 creator A5037038581 @default.
- W2600481111 creator A5045706251 @default.
- W2600481111 creator A5046144984 @default.
- W2600481111 creator A5052034241 @default.
- W2600481111 creator A5058648972 @default.
- W2600481111 creator A5064784018 @default.
- W2600481111 creator A5068050214 @default.
- W2600481111 creator A5071270344 @default.
- W2600481111 creator A5073680967 @default.
- W2600481111 creator A5076912624 @default.
- W2600481111 creator A5088767177 @default.
- W2600481111 date "2017-11-01" @default.
- W2600481111 modified "2023-10-18" @default.
- W2600481111 title "Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses" @default.
- W2600481111 cites W1732892700 @default.
- W2600481111 cites W1757419189 @default.
- W2600481111 cites W1967809301 @default.
- W2600481111 cites W1968147520 @default.
- W2600481111 cites W1968972970 @default.
- W2600481111 cites W1969072247 @default.
- W2600481111 cites W1974937503 @default.
- W2600481111 cites W1978063849 @default.
- W2600481111 cites W1990796256 @default.
- W2600481111 cites W1991701295 @default.
- W2600481111 cites W1992215904 @default.
- W2600481111 cites W2002855771 @default.
- W2600481111 cites W2005599815 @default.
- W2600481111 cites W2011946439 @default.
- W2600481111 cites W2016354084 @default.
- W2600481111 cites W2017323382 @default.
- W2600481111 cites W2019576909 @default.
- W2600481111 cites W2027210355 @default.
- W2600481111 cites W2030652623 @default.
- W2600481111 cites W2033193372 @default.
- W2600481111 cites W2042301629 @default.
- W2600481111 cites W2042926593 @default.
- W2600481111 cites W2046032852 @default.
- W2600481111 cites W2054329126 @default.
- W2600481111 cites W2057265077 @default.
- W2600481111 cites W2058790172 @default.
- W2600481111 cites W2061000745 @default.
- W2600481111 cites W2062144811 @default.
- W2600481111 cites W2062267695 @default.
- W2600481111 cites W2063694955 @default.
- W2600481111 cites W2068064088 @default.
- W2600481111 cites W2070140787 @default.
- W2600481111 cites W2070416023 @default.
- W2600481111 cites W2077405407 @default.
- W2600481111 cites W2082580360 @default.
- W2600481111 cites W2101006270 @default.
- W2600481111 cites W2101126238 @default.
- W2600481111 cites W2104558356 @default.
- W2600481111 cites W2115541182 @default.
- W2600481111 cites W2123912956 @default.
- W2600481111 cites W2131388477 @default.
- W2600481111 cites W2133265454 @default.
- W2600481111 cites W2139655679 @default.
- W2600481111 cites W2144887013 @default.
- W2600481111 cites W2160694273 @default.
- W2600481111 cites W2172997271 @default.
- W2600481111 cites W2317856574 @default.
- W2600481111 cites W2322661985 @default.
- W2600481111 cites W2339186749 @default.
- W2600481111 doi "https://doi.org/10.1016/j.jaci.2016.12.985" @default.
- W2600481111 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5667586" @default.
- W2600481111 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28343701" @default.
- W2600481111 hasPublicationYear "2017" @default.
- W2600481111 type Work @default.
- W2600481111 sameAs 2600481111 @default.
- W2600481111 citedByCount "102" @default.
- W2600481111 countsByYear W26004811112017 @default.
- W2600481111 countsByYear W26004811112018 @default.
- W2600481111 countsByYear W26004811112019 @default.
- W2600481111 countsByYear W26004811112020 @default.
- W2600481111 countsByYear W26004811112021 @default.
- W2600481111 countsByYear W26004811112022 @default.
- W2600481111 countsByYear W26004811112023 @default.
- W2600481111 crossrefType "journal-article" @default.
- W2600481111 hasAuthorship W2600481111A5005255746 @default.
- W2600481111 hasAuthorship W2600481111A5008497977 @default.
- W2600481111 hasAuthorship W2600481111A5019180077 @default.
- W2600481111 hasAuthorship W2600481111A5024058990 @default.
- W2600481111 hasAuthorship W2600481111A5024157568 @default.
- W2600481111 hasAuthorship W2600481111A5031517705 @default.
- W2600481111 hasAuthorship W2600481111A5035307518 @default.
- W2600481111 hasAuthorship W2600481111A5037038581 @default.
- W2600481111 hasAuthorship W2600481111A5045706251 @default.
- W2600481111 hasAuthorship W2600481111A5046144984 @default.
- W2600481111 hasAuthorship W2600481111A5052034241 @default.