Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600496121> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2600496121 abstract "Bayesian Networks (BNs) is a graphical representation model of some random variables and the relationship between the random variables. It is used to determine the joint probability of some random variables based on the posterior probability of each random variable. The posterior probability is calculated based on the parameters of the prior distribution. Prior distribution used in BNs includes the Dirichlet distribution. It is a conjugate prior for the multinomial distribution. Graph of BNs (belief-network structure) is determined by maximizing the probability of each random variable. One of the algorithms used to maximize it is K2 algorithm. The present research seeks to re-derive the joint probability in the belief-network structure using Dirichlet distribution, and to determine K2 algorithm for the structure. The joint probability obtained is the product of each probability of BNs random variable. The probability shows the dependence of a random variable with the others (parents). Based on these views, K2 algorithm can be used and Probability derived from the structure is considered as the product of the probability of each random variable. The probability of each random variable is calculated with the formula f(i,πi)=∏j=1qi(N′ij+ri−1)!Nij+N′ij+ri−1∏k=1ri(Nijk+N′ijk)!N′ijk!.. The belief-network structure is found out by determining a set of parents (πi) probably from random variables. Determination of the parents is based on the maximum probability of any random variable through algorithms K2." @default.
- W2600496121 created "2017-04-07" @default.
- W2600496121 creator A5000847023 @default.
- W2600496121 creator A5017079093 @default.
- W2600496121 creator A5036394992 @default.
- W2600496121 creator A5051857035 @default.
- W2600496121 date "2017-01-01" @default.
- W2600496121 modified "2023-09-26" @default.
- W2600496121 title "Prior and posterior dirichlet distributions on bayesian networks (BNs)" @default.
- W2600496121 cites W1988520084 @default.
- W2600496121 cites W2118196167 @default.
- W2600496121 cites W2124758737 @default.
- W2600496121 cites W2139606141 @default.
- W2600496121 cites W2161970884 @default.
- W2600496121 cites W217238853 @default.
- W2600496121 cites W2964136170 @default.
- W2600496121 cites W3020913839 @default.
- W2600496121 cites W4211084607 @default.
- W2600496121 cites W4232632925 @default.
- W2600496121 cites W4236354166 @default.
- W2600496121 doi "https://doi.org/10.1063/1.4979452" @default.
- W2600496121 hasPublicationYear "2017" @default.
- W2600496121 type Work @default.
- W2600496121 sameAs 2600496121 @default.
- W2600496121 citedByCount "6" @default.
- W2600496121 countsByYear W26004961212020 @default.
- W2600496121 countsByYear W26004961212021 @default.
- W2600496121 countsByYear W26004961212022 @default.
- W2600496121 countsByYear W26004961212023 @default.
- W2600496121 crossrefType "proceedings-article" @default.
- W2600496121 hasAuthorship W2600496121A5000847023 @default.
- W2600496121 hasAuthorship W2600496121A5017079093 @default.
- W2600496121 hasAuthorship W2600496121A5036394992 @default.
- W2600496121 hasAuthorship W2600496121A5051857035 @default.
- W2600496121 hasBestOaLocation W26004961211 @default.
- W2600496121 hasConcept C105795698 @default.
- W2600496121 hasConcept C107673813 @default.
- W2600496121 hasConcept C118615104 @default.
- W2600496121 hasConcept C122123141 @default.
- W2600496121 hasConcept C132525143 @default.
- W2600496121 hasConcept C134306372 @default.
- W2600496121 hasConcept C149441793 @default.
- W2600496121 hasConcept C158557763 @default.
- W2600496121 hasConcept C165216359 @default.
- W2600496121 hasConcept C169214877 @default.
- W2600496121 hasConcept C177769412 @default.
- W2600496121 hasConcept C182310444 @default.
- W2600496121 hasConcept C18653775 @default.
- W2600496121 hasConcept C192065140 @default.
- W2600496121 hasConcept C197096303 @default.
- W2600496121 hasConcept C33724603 @default.
- W2600496121 hasConcept C33923547 @default.
- W2600496121 hasConcept C47458327 @default.
- W2600496121 hasConcept C57830394 @default.
- W2600496121 hasConcept C89231458 @default.
- W2600496121 hasConceptScore W2600496121C105795698 @default.
- W2600496121 hasConceptScore W2600496121C107673813 @default.
- W2600496121 hasConceptScore W2600496121C118615104 @default.
- W2600496121 hasConceptScore W2600496121C122123141 @default.
- W2600496121 hasConceptScore W2600496121C132525143 @default.
- W2600496121 hasConceptScore W2600496121C134306372 @default.
- W2600496121 hasConceptScore W2600496121C149441793 @default.
- W2600496121 hasConceptScore W2600496121C158557763 @default.
- W2600496121 hasConceptScore W2600496121C165216359 @default.
- W2600496121 hasConceptScore W2600496121C169214877 @default.
- W2600496121 hasConceptScore W2600496121C177769412 @default.
- W2600496121 hasConceptScore W2600496121C182310444 @default.
- W2600496121 hasConceptScore W2600496121C18653775 @default.
- W2600496121 hasConceptScore W2600496121C192065140 @default.
- W2600496121 hasConceptScore W2600496121C197096303 @default.
- W2600496121 hasConceptScore W2600496121C33724603 @default.
- W2600496121 hasConceptScore W2600496121C33923547 @default.
- W2600496121 hasConceptScore W2600496121C47458327 @default.
- W2600496121 hasConceptScore W2600496121C57830394 @default.
- W2600496121 hasConceptScore W2600496121C89231458 @default.
- W2600496121 hasLocation W26004961211 @default.
- W2600496121 hasOpenAccess W2600496121 @default.
- W2600496121 hasPrimaryLocation W26004961211 @default.
- W2600496121 hasRelatedWork W1508343516 @default.
- W2600496121 hasRelatedWork W1562004654 @default.
- W2600496121 hasRelatedWork W2031505008 @default.
- W2600496121 hasRelatedWork W2280038516 @default.
- W2600496121 hasRelatedWork W2360590334 @default.
- W2600496121 hasRelatedWork W2382906074 @default.
- W2600496121 hasRelatedWork W3048515590 @default.
- W2600496121 hasRelatedWork W3088628728 @default.
- W2600496121 hasRelatedWork W3149859847 @default.
- W2600496121 hasRelatedWork W4234449911 @default.
- W2600496121 isParatext "false" @default.
- W2600496121 isRetracted "false" @default.
- W2600496121 magId "2600496121" @default.
- W2600496121 workType "article" @default.