Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600775919> ?p ?o ?g. }
- W2600775919 endingPage "733" @default.
- W2600775919 startingPage "715" @default.
- W2600775919 abstract "The problem of learning fuzzy rule bases is analyzed from the perspective of finding a favorable balance between the accuracy of the system, the speed required to learn the rules, and, finally, the interpretability of the rule bases obtained. Therefore, we introduce a complete design procedure to learn and then optimize the system rule base, called the precise and fast fuzzy modeling approach. Under this paradigm, fuzzy rules are generated from numerical data using a parameterizable greedy-based learning method called selection-reduction, whose accuracy-speed efficiency is confirmed through empirical results and comparisons with reference methods. Qualitative justification for this method is provided based on the coaction between fuzzy logic and the intrinsic properties of greedy algorithms. To complete the precise and fast fuzzy modeling strategy, we finally present a rule-base optimization technique driven by a novel rule redundancy index, which takes into account the concepts of the distance between rules and the influence of a rule over the dataset. Experimental results show that the proposed index can be used to obtain compact rule bases, which remain very accurate, thus increasing system interpretability." @default.
- W2600775919 created "2017-04-07" @default.
- W2600775919 creator A5025192685 @default.
- W2600775919 creator A5030394919 @default.
- W2600775919 creator A5059985318 @default.
- W2600775919 date "2018-04-01" @default.
- W2600775919 modified "2023-10-17" @default.
- W2600775919 title "A Fast and Accurate Rule-Base Generation Method for Mamdani Fuzzy Systems" @default.
- W2600775919 cites W1197622812 @default.
- W2600775919 cites W1855484900 @default.
- W2600775919 cites W1964508600 @default.
- W2600775919 cites W1977904727 @default.
- W2600775919 cites W1983425265 @default.
- W2600775919 cites W1988589234 @default.
- W2600775919 cites W1992176519 @default.
- W2600775919 cites W2002041997 @default.
- W2600775919 cites W2011523679 @default.
- W2600775919 cites W2022421417 @default.
- W2600775919 cites W2022628426 @default.
- W2600775919 cites W2025863110 @default.
- W2600775919 cites W2027016459 @default.
- W2600775919 cites W2027173927 @default.
- W2600775919 cites W2049846187 @default.
- W2600775919 cites W2050288270 @default.
- W2600775919 cites W2056713142 @default.
- W2600775919 cites W2062075188 @default.
- W2600775919 cites W2069634840 @default.
- W2600775919 cites W2073020915 @default.
- W2600775919 cites W2074531922 @default.
- W2600775919 cites W2079325629 @default.
- W2600775919 cites W2084126977 @default.
- W2600775919 cites W2084620097 @default.
- W2600775919 cites W2086274107 @default.
- W2600775919 cites W2103269436 @default.
- W2600775919 cites W2106250741 @default.
- W2600775919 cites W2106677047 @default.
- W2600775919 cites W2116441545 @default.
- W2600775919 cites W2122558540 @default.
- W2600775919 cites W2124227618 @default.
- W2600775919 cites W2127065459 @default.
- W2600775919 cites W2129354040 @default.
- W2600775919 cites W2140460921 @default.
- W2600775919 cites W2145479133 @default.
- W2600775919 cites W2148765784 @default.
- W2600775919 cites W2148885430 @default.
- W2600775919 cites W2156950153 @default.
- W2600775919 cites W2158358659 @default.
- W2600775919 cites W2159371584 @default.
- W2600775919 cites W2161171165 @default.
- W2600775919 cites W2162259705 @default.
- W2600775919 cites W2184721046 @default.
- W2600775919 cites W3011102928 @default.
- W2600775919 cites W307267756 @default.
- W2600775919 cites W4236137412 @default.
- W2600775919 cites W4379106708 @default.
- W2600775919 doi "https://doi.org/10.1109/tfuzz.2017.2688349" @default.
- W2600775919 hasPublicationYear "2018" @default.
- W2600775919 type Work @default.
- W2600775919 sameAs 2600775919 @default.
- W2600775919 citedByCount "70" @default.
- W2600775919 countsByYear W26007759192017 @default.
- W2600775919 countsByYear W26007759192018 @default.
- W2600775919 countsByYear W26007759192019 @default.
- W2600775919 countsByYear W26007759192020 @default.
- W2600775919 countsByYear W26007759192021 @default.
- W2600775919 countsByYear W26007759192022 @default.
- W2600775919 countsByYear W26007759192023 @default.
- W2600775919 crossrefType "journal-article" @default.
- W2600775919 hasAuthorship W2600775919A5025192685 @default.
- W2600775919 hasAuthorship W2600775919A5030394919 @default.
- W2600775919 hasAuthorship W2600775919A5059985318 @default.
- W2600775919 hasBestOaLocation W26007759192 @default.
- W2600775919 hasConcept C111919701 @default.
- W2600775919 hasConcept C11413529 @default.
- W2600775919 hasConcept C119857082 @default.
- W2600775919 hasConcept C124101348 @default.
- W2600775919 hasConcept C126255220 @default.
- W2600775919 hasConcept C134306372 @default.
- W2600775919 hasConcept C148671577 @default.
- W2600775919 hasConcept C149271511 @default.
- W2600775919 hasConcept C152124472 @default.
- W2600775919 hasConcept C154945302 @default.
- W2600775919 hasConcept C195975749 @default.
- W2600775919 hasConcept C2780049643 @default.
- W2600775919 hasConcept C2781067378 @default.
- W2600775919 hasConcept C29470771 @default.
- W2600775919 hasConcept C33923547 @default.
- W2600775919 hasConcept C41008148 @default.
- W2600775919 hasConcept C42058472 @default.
- W2600775919 hasConcept C51823790 @default.
- W2600775919 hasConcept C58166 @default.
- W2600775919 hasConceptScore W2600775919C111919701 @default.
- W2600775919 hasConceptScore W2600775919C11413529 @default.
- W2600775919 hasConceptScore W2600775919C119857082 @default.
- W2600775919 hasConceptScore W2600775919C124101348 @default.
- W2600775919 hasConceptScore W2600775919C126255220 @default.
- W2600775919 hasConceptScore W2600775919C134306372 @default.
- W2600775919 hasConceptScore W2600775919C148671577 @default.