Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600778237> ?p ?o ?g. }
- W2600778237 endingPage "590" @default.
- W2600778237 startingPage "579" @default.
- W2600778237 abstract "A range of spatial analyses are used in the field of crime mapping, such as kernel density estimation, Ripley's K-function, and spatial autocorrelation, but there is limited use of Voronoi diagrams (VDs). The goal of this article is to contribute to the spatial analysis of crime through the use of VDs. We use four years of commercial robbery data from Campinas, Brazil, and employ several VD techniques: (1) We analyze crime concentrations through the properties of VDs—area and number of vertices—and coverage curve; (2) we introduce a new crime geovisualization with VD in three dimensions; and (3) we apply a network VD technique to crime analysis. The results demonstrate associations between these VD techniques and the ability of the researcher to recognize crime patterns associated with crime concentration, crime along pathways, and the highly regularized distribution of crime in limited areas spatially." @default.
- W2600778237 created "2017-04-07" @default.
- W2600778237 creator A5030367930 @default.
- W2600778237 creator A5038445455 @default.
- W2600778237 creator A5073536361 @default.
- W2600778237 date "2017-03-31" @default.
- W2600778237 modified "2023-10-18" @default.
- W2600778237 title "Voronoi Diagrams and Spatial Analysis of Crime" @default.
- W2600778237 cites W1174659132 @default.
- W2600778237 cites W1479955723 @default.
- W2600778237 cites W1519327417 @default.
- W2600778237 cites W1536227475 @default.
- W2600778237 cites W1540272031 @default.
- W2600778237 cites W1781871969 @default.
- W2600778237 cites W1887233987 @default.
- W2600778237 cites W1964056286 @default.
- W2600778237 cites W1967005434 @default.
- W2600778237 cites W1975818108 @default.
- W2600778237 cites W1978293581 @default.
- W2600778237 cites W1981474510 @default.
- W2600778237 cites W1987685062 @default.
- W2600778237 cites W1989306921 @default.
- W2600778237 cites W2004472722 @default.
- W2600778237 cites W2008911215 @default.
- W2600778237 cites W2014635219 @default.
- W2600778237 cites W2016341889 @default.
- W2600778237 cites W2020633907 @default.
- W2600778237 cites W2021204860 @default.
- W2600778237 cites W2024053323 @default.
- W2600778237 cites W2031346533 @default.
- W2600778237 cites W2032101051 @default.
- W2600778237 cites W2056851208 @default.
- W2600778237 cites W2058552802 @default.
- W2600778237 cites W2063293061 @default.
- W2600778237 cites W2070786837 @default.
- W2600778237 cites W2074414201 @default.
- W2600778237 cites W2083822022 @default.
- W2600778237 cites W2090383360 @default.
- W2600778237 cites W2090540087 @default.
- W2600778237 cites W2092566975 @default.
- W2600778237 cites W2104229632 @default.
- W2600778237 cites W2114830215 @default.
- W2600778237 cites W2115715042 @default.
- W2600778237 cites W2124814626 @default.
- W2600778237 cites W2148420803 @default.
- W2600778237 cites W2151248557 @default.
- W2600778237 cites W21857574 @default.
- W2600778237 cites W2298798447 @default.
- W2600778237 cites W2556422168 @default.
- W2600778237 cites W4239339957 @default.
- W2600778237 cites W4249206705 @default.
- W2600778237 cites W4249855545 @default.
- W2600778237 cites W4299708757 @default.
- W2600778237 cites W561173791 @default.
- W2600778237 cites W68465796 @default.
- W2600778237 doi "https://doi.org/10.1080/00330124.2017.1288578" @default.
- W2600778237 hasPublicationYear "2017" @default.
- W2600778237 type Work @default.
- W2600778237 sameAs 2600778237 @default.
- W2600778237 citedByCount "13" @default.
- W2600778237 countsByYear W26007782372018 @default.
- W2600778237 countsByYear W26007782372019 @default.
- W2600778237 countsByYear W26007782372020 @default.
- W2600778237 countsByYear W26007782372021 @default.
- W2600778237 countsByYear W26007782372022 @default.
- W2600778237 countsByYear W26007782372023 @default.
- W2600778237 crossrefType "journal-article" @default.
- W2600778237 hasAuthorship W2600778237A5030367930 @default.
- W2600778237 hasAuthorship W2600778237A5038445455 @default.
- W2600778237 hasAuthorship W2600778237A5073536361 @default.
- W2600778237 hasConcept C105795698 @default.
- W2600778237 hasConcept C12380541 @default.
- W2600778237 hasConcept C124101348 @default.
- W2600778237 hasConcept C127413603 @default.
- W2600778237 hasConcept C144024400 @default.
- W2600778237 hasConcept C146978453 @default.
- W2600778237 hasConcept C159620131 @default.
- W2600778237 hasConcept C185429906 @default.
- W2600778237 hasConcept C185578843 @default.
- W2600778237 hasConcept C202444582 @default.
- W2600778237 hasConcept C204323151 @default.
- W2600778237 hasConcept C205649164 @default.
- W2600778237 hasConcept C24881265 @default.
- W2600778237 hasConcept C2522767166 @default.
- W2600778237 hasConcept C2524010 @default.
- W2600778237 hasConcept C2776876444 @default.
- W2600778237 hasConcept C2777016058 @default.
- W2600778237 hasConcept C33923547 @default.
- W2600778237 hasConcept C36464697 @default.
- W2600778237 hasConcept C41008148 @default.
- W2600778237 hasConcept C58640448 @default.
- W2600778237 hasConcept C62649853 @default.
- W2600778237 hasConcept C71134354 @default.
- W2600778237 hasConcept C73484699 @default.
- W2600778237 hasConcept C9652623 @default.
- W2600778237 hasConceptScore W2600778237C105795698 @default.
- W2600778237 hasConceptScore W2600778237C12380541 @default.
- W2600778237 hasConceptScore W2600778237C124101348 @default.