Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600821601> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2600821601 abstract "In analytical chemistry, rapid advancement in instrumentation, especially in high resolution mass-spectrometry is making a significant contribution for further developments of the field. As such, in separation science, nowadays, several hyphenated techniques have proven to be the state-of-the-art techniques for compound identification and characterization. Furthermore, these techniques have found several application areas including biomarker discovery, forensic investigation, food-health research and many others, mainly because of their high sensitivity, selectivity, and scope of analysis. As these techniques advance, the amount of data generated by the high resolution instruments has also increased tremendously, requiring a more sophisticated data analysis techniques to cope with the ‘big data’, and that can simultaneously extract and utilize the information. Taking into account the benefit of instrument coupling (i.e. LC-HRMS) for better separation and characterization of compounds has already been proven to be the most efficient approach, in the years to come, it can be speculated that even more sophisticated techniques such as liquid chromatography coupled to ion mobility spectrometry, and high resolution mass spectrometer (LC-IMS-HRMS) will be the dominating techniques, expanding the dimensionality and the complexity of the data produced. Thus, more than ever, it’s crucial for data analysis techniques to advance a lot faster to manage the computational challenges, and so as to harness the full potential of these promising analytical techniques for routine analysis. The project of this thesis was a joint effort of industry partners involved in forensic, food-safety and material science, and had a common goal and interest in the development of robust data analysis techniques for compound screening. As such, the main aim of this thesis was directed towards improving the conventional data analysis techniques in regards to peak detection, and compound identification for both targeted and untargeted screening. Given this aim, novel algorithms based on probabilistic machine learning, demonstrated to be a better alternative in comparison to conventional threshold-based approaches were developed, and validated." @default.
- W2600821601 created "2017-04-07" @default.
- W2600821601 creator A5003235356 @default.
- W2600821601 date "2017-01-01" @default.
- W2600821601 modified "2023-09-28" @default.
- W2600821601 title "Innovative methods for data analysis in analytical chemistry using Bayesian statistics and machine learning" @default.
- W2600821601 hasPublicationYear "2017" @default.
- W2600821601 type Work @default.
- W2600821601 sameAs 2600821601 @default.
- W2600821601 citedByCount "0" @default.
- W2600821601 crossrefType "journal-article" @default.
- W2600821601 hasAuthorship W2600821601A5003235356 @default.
- W2600821601 hasConcept C111919701 @default.
- W2600821601 hasConcept C116834253 @default.
- W2600821601 hasConcept C118530786 @default.
- W2600821601 hasConcept C119857082 @default.
- W2600821601 hasConcept C124101348 @default.
- W2600821601 hasConcept C127413603 @default.
- W2600821601 hasConcept C138268822 @default.
- W2600821601 hasConcept C151304367 @default.
- W2600821601 hasConcept C154945302 @default.
- W2600821601 hasConcept C171250308 @default.
- W2600821601 hasConcept C183696295 @default.
- W2600821601 hasConcept C192562407 @default.
- W2600821601 hasConcept C201995342 @default.
- W2600821601 hasConcept C202444582 @default.
- W2600821601 hasConcept C2522767166 @default.
- W2600821601 hasConcept C2780841128 @default.
- W2600821601 hasConcept C33923547 @default.
- W2600821601 hasConcept C41008148 @default.
- W2600821601 hasConcept C59822182 @default.
- W2600821601 hasConcept C86803240 @default.
- W2600821601 hasConcept C9652623 @default.
- W2600821601 hasConceptScore W2600821601C111919701 @default.
- W2600821601 hasConceptScore W2600821601C116834253 @default.
- W2600821601 hasConceptScore W2600821601C118530786 @default.
- W2600821601 hasConceptScore W2600821601C119857082 @default.
- W2600821601 hasConceptScore W2600821601C124101348 @default.
- W2600821601 hasConceptScore W2600821601C127413603 @default.
- W2600821601 hasConceptScore W2600821601C138268822 @default.
- W2600821601 hasConceptScore W2600821601C151304367 @default.
- W2600821601 hasConceptScore W2600821601C154945302 @default.
- W2600821601 hasConceptScore W2600821601C171250308 @default.
- W2600821601 hasConceptScore W2600821601C183696295 @default.
- W2600821601 hasConceptScore W2600821601C192562407 @default.
- W2600821601 hasConceptScore W2600821601C201995342 @default.
- W2600821601 hasConceptScore W2600821601C202444582 @default.
- W2600821601 hasConceptScore W2600821601C2522767166 @default.
- W2600821601 hasConceptScore W2600821601C2780841128 @default.
- W2600821601 hasConceptScore W2600821601C33923547 @default.
- W2600821601 hasConceptScore W2600821601C41008148 @default.
- W2600821601 hasConceptScore W2600821601C59822182 @default.
- W2600821601 hasConceptScore W2600821601C86803240 @default.
- W2600821601 hasConceptScore W2600821601C9652623 @default.
- W2600821601 hasLocation W26008216011 @default.
- W2600821601 hasOpenAccess W2600821601 @default.
- W2600821601 hasPrimaryLocation W26008216011 @default.
- W2600821601 hasRelatedWork W14197325 @default.
- W2600821601 hasRelatedWork W1973422967 @default.
- W2600821601 hasRelatedWork W2010794462 @default.
- W2600821601 hasRelatedWork W2080117134 @default.
- W2600821601 hasRelatedWork W2080563084 @default.
- W2600821601 hasRelatedWork W2094865400 @default.
- W2600821601 hasRelatedWork W2115654034 @default.
- W2600821601 hasRelatedWork W2284735529 @default.
- W2600821601 hasRelatedWork W2339107523 @default.
- W2600821601 hasRelatedWork W2404777816 @default.
- W2600821601 hasRelatedWork W2802266602 @default.
- W2600821601 hasRelatedWork W2888598471 @default.
- W2600821601 hasRelatedWork W2910930885 @default.
- W2600821601 hasRelatedWork W2978604791 @default.
- W2600821601 hasRelatedWork W3005703146 @default.
- W2600821601 hasRelatedWork W3016372786 @default.
- W2600821601 hasRelatedWork W3083654186 @default.
- W2600821601 hasRelatedWork W3093484680 @default.
- W2600821601 hasRelatedWork W3194051940 @default.
- W2600821601 hasRelatedWork W324185231 @default.
- W2600821601 isParatext "false" @default.
- W2600821601 isRetracted "false" @default.
- W2600821601 magId "2600821601" @default.
- W2600821601 workType "article" @default.