Matches in SemOpenAlex for { <https://semopenalex.org/work/W2600867386> ?p ?o ?g. }
- W2600867386 endingPage "126" @default.
- W2600867386 startingPage "109" @default.
- W2600867386 abstract "Efficient sampling strategies that scale with the size of the problem, computational budget, and users’ needs are essential for various sampling-based analyses, such as sensitivity and uncertainty analysis. In this study, we propose a new strategy, called Progressive Latin Hypercube Sampling (PLHS), which sequentially generates sample points while progressively preserving the distributional properties of interest (Latin hypercube properties, space-filling, etc.), as the sample size grows. Unlike Latin hypercube sampling, PLHS generates a series of smaller sub-sets (slices) such that (1) the first slice is Latin hypercube, (2) the progressive union of slices remains Latin hypercube and achieves maximum stratification in any one-dimensional projection, and as such (3) the entire sample set is Latin hypercube. The performance of PLHS is compared with benchmark sampling strategies across multiple case studies for Monte Carlo simulation, sensitivity and uncertainty analysis. Our results indicate that PLHS leads to improved efficiency, convergence, and robustness of sampling-based analyses." @default.
- W2600867386 created "2017-04-07" @default.
- W2600867386 creator A5004269321 @default.
- W2600867386 creator A5057247502 @default.
- W2600867386 date "2017-07-01" @default.
- W2600867386 modified "2023-10-13" @default.
- W2600867386 title "Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models" @default.
- W2600867386 cites W1528483814 @default.
- W2600867386 cites W1555609576 @default.
- W2600867386 cites W1628093780 @default.
- W2600867386 cites W1909649765 @default.
- W2600867386 cites W1967692477 @default.
- W2600867386 cites W1969545943 @default.
- W2600867386 cites W1972931067 @default.
- W2600867386 cites W1973166102 @default.
- W2600867386 cites W1978532016 @default.
- W2600867386 cites W1981270896 @default.
- W2600867386 cites W1981618598 @default.
- W2600867386 cites W1992277919 @default.
- W2600867386 cites W1992401172 @default.
- W2600867386 cites W1994080277 @default.
- W2600867386 cites W1994884074 @default.
- W2600867386 cites W1995711095 @default.
- W2600867386 cites W2000032235 @default.
- W2600867386 cites W2001331635 @default.
- W2600867386 cites W2008824424 @default.
- W2600867386 cites W2011375014 @default.
- W2600867386 cites W2017001763 @default.
- W2600867386 cites W2018248045 @default.
- W2600867386 cites W2020821169 @default.
- W2600867386 cites W2032709962 @default.
- W2600867386 cites W2036056913 @default.
- W2600867386 cites W2037639866 @default.
- W2600867386 cites W2040396531 @default.
- W2600867386 cites W2044582942 @default.
- W2600867386 cites W2044973463 @default.
- W2600867386 cites W2051591670 @default.
- W2600867386 cites W2052960370 @default.
- W2600867386 cites W2055591121 @default.
- W2600867386 cites W2056145269 @default.
- W2600867386 cites W2066255661 @default.
- W2600867386 cites W2070425636 @default.
- W2600867386 cites W2072991264 @default.
- W2600867386 cites W2073194613 @default.
- W2600867386 cites W2083252561 @default.
- W2600867386 cites W2093625674 @default.
- W2600867386 cites W2100184918 @default.
- W2600867386 cites W2108750696 @default.
- W2600867386 cites W2117319840 @default.
- W2600867386 cites W2124738823 @default.
- W2600867386 cites W2124741347 @default.
- W2600867386 cites W2127266322 @default.
- W2600867386 cites W2158237256 @default.
- W2600867386 cites W2161933013 @default.
- W2600867386 cites W2165760245 @default.
- W2600867386 cites W2169092059 @default.
- W2600867386 cites W2170660905 @default.
- W2600867386 cites W2171993497 @default.
- W2600867386 cites W2173025977 @default.
- W2600867386 cites W2202906839 @default.
- W2600867386 cites W2209897355 @default.
- W2600867386 cites W2221870291 @default.
- W2600867386 cites W2341416175 @default.
- W2600867386 cites W2507921495 @default.
- W2600867386 cites W2512086719 @default.
- W2600867386 cites W2568283272 @default.
- W2600867386 cites W2765767683 @default.
- W2600867386 cites W4248911614 @default.
- W2600867386 cites W4249753629 @default.
- W2600867386 doi "https://doi.org/10.1016/j.envsoft.2017.03.010" @default.
- W2600867386 hasPublicationYear "2017" @default.
- W2600867386 type Work @default.
- W2600867386 sameAs 2600867386 @default.
- W2600867386 citedByCount "119" @default.
- W2600867386 countsByYear W26008673862017 @default.
- W2600867386 countsByYear W26008673862018 @default.
- W2600867386 countsByYear W26008673862019 @default.
- W2600867386 countsByYear W26008673862020 @default.
- W2600867386 countsByYear W26008673862021 @default.
- W2600867386 countsByYear W26008673862022 @default.
- W2600867386 countsByYear W26008673862023 @default.
- W2600867386 crossrefType "journal-article" @default.
- W2600867386 hasAuthorship W2600867386A5004269321 @default.
- W2600867386 hasAuthorship W2600867386A5057247502 @default.
- W2600867386 hasConcept C104317684 @default.
- W2600867386 hasConcept C105795698 @default.
- W2600867386 hasConcept C106131492 @default.
- W2600867386 hasConcept C11413529 @default.
- W2600867386 hasConcept C126255220 @default.
- W2600867386 hasConcept C13280743 @default.
- W2600867386 hasConcept C140779682 @default.
- W2600867386 hasConcept C173608175 @default.
- W2600867386 hasConcept C185592680 @default.
- W2600867386 hasConcept C185798385 @default.
- W2600867386 hasConcept C19499675 @default.
- W2600867386 hasConcept C198531522 @default.
- W2600867386 hasConcept C205649164 @default.
- W2600867386 hasConcept C20820323 @default.