Matches in SemOpenAlex for { <https://semopenalex.org/work/W2601049448> ?p ?o ?g. }
- W2601049448 endingPage "778" @default.
- W2601049448 startingPage "768" @default.
- W2601049448 abstract "Thermal errors are one of the most significant factors that influence the machining precision of machine tools. For large-sized gear grinding machine tools, thermal errors of beds, columns and rotary tables are decreased by their huge heat capacity. However, different from machine tools of normal sizes, thermal errors increase with greater power in motorised spindles. Thermal error compensation is generally considered as a relatively effective, convenient and cost-efficient approach in thermal error control and reduction. This article proposes two thermal error prediction models for motorised spindles based on an adaptive neuro-fuzzy inference system and support vector machine, respectively. In the adaptive neuro-fuzzy inference system–based model, the temperature values are divided into different groups using subtractive clustering. A hybrid learning scheme is adopted to adjust membership functions so as to learn from the input data. In the particle swarm optimisation support vector machine–based model, particle swarm optimisation is used to optimise the hyperparameters of the established model. Thermal balance experiments are conducted on a large-sized computer numerical control gear grinding machine tool to establish the prediction models. Comparative results show that the adaptive neuro-fuzzy inference system model has higher prediction accuracy (with residual errors within ±2.5 μm in the radial direction and ±3 μm in the axial direction) than the support vector machine model." @default.
- W2601049448 created "2017-04-07" @default.
- W2601049448 creator A5004212406 @default.
- W2601049448 creator A5017032066 @default.
- W2601049448 creator A5050658142 @default.
- W2601049448 creator A5074718737 @default.
- W2601049448 creator A5084827882 @default.
- W2601049448 creator A5089859833 @default.
- W2601049448 date "2017-03-28" @default.
- W2601049448 modified "2023-09-25" @default.
- W2601049448 title "Thermal error modelling of motorised spindle in large-sized gear grinding machine" @default.
- W2601049448 cites W1967088817 @default.
- W2601049448 cites W1977798922 @default.
- W2601049448 cites W1977935589 @default.
- W2601049448 cites W1988729822 @default.
- W2601049448 cites W1990071522 @default.
- W2601049448 cites W1990125899 @default.
- W2601049448 cites W1990565902 @default.
- W2601049448 cites W1992916837 @default.
- W2601049448 cites W1998173819 @default.
- W2601049448 cites W1998481880 @default.
- W2601049448 cites W2005360611 @default.
- W2601049448 cites W2019207321 @default.
- W2601049448 cites W2025691834 @default.
- W2601049448 cites W2026550880 @default.
- W2601049448 cites W2035565542 @default.
- W2601049448 cites W2038009392 @default.
- W2601049448 cites W2043601654 @default.
- W2601049448 cites W2066225431 @default.
- W2601049448 cites W2067663090 @default.
- W2601049448 cites W2074011020 @default.
- W2601049448 cites W2085308176 @default.
- W2601049448 cites W2136150672 @default.
- W2601049448 cites W2158994553 @default.
- W2601049448 cites W2162280343 @default.
- W2601049448 cites W2335203013 @default.
- W2601049448 cites W321074605 @default.
- W2601049448 doi "https://doi.org/10.1177/0954405417696335" @default.
- W2601049448 hasPublicationYear "2017" @default.
- W2601049448 type Work @default.
- W2601049448 sameAs 2601049448 @default.
- W2601049448 citedByCount "10" @default.
- W2601049448 countsByYear W26010494482018 @default.
- W2601049448 countsByYear W26010494482019 @default.
- W2601049448 countsByYear W26010494482020 @default.
- W2601049448 countsByYear W26010494482023 @default.
- W2601049448 crossrefType "journal-article" @default.
- W2601049448 hasAuthorship W2601049448A5004212406 @default.
- W2601049448 hasAuthorship W2601049448A5017032066 @default.
- W2601049448 hasAuthorship W2601049448A5050658142 @default.
- W2601049448 hasAuthorship W2601049448A5074718737 @default.
- W2601049448 hasAuthorship W2601049448A5084827882 @default.
- W2601049448 hasAuthorship W2601049448A5089859833 @default.
- W2601049448 hasConcept C119857082 @default.
- W2601049448 hasConcept C12267149 @default.
- W2601049448 hasConcept C127413603 @default.
- W2601049448 hasConcept C154945302 @default.
- W2601049448 hasConcept C186108316 @default.
- W2601049448 hasConcept C195975749 @default.
- W2601049448 hasConcept C29470771 @default.
- W2601049448 hasConcept C41008148 @default.
- W2601049448 hasConcept C523214423 @default.
- W2601049448 hasConcept C58166 @default.
- W2601049448 hasConcept C5941749 @default.
- W2601049448 hasConcept C78519656 @default.
- W2601049448 hasConcept C85617194 @default.
- W2601049448 hasConceptScore W2601049448C119857082 @default.
- W2601049448 hasConceptScore W2601049448C12267149 @default.
- W2601049448 hasConceptScore W2601049448C127413603 @default.
- W2601049448 hasConceptScore W2601049448C154945302 @default.
- W2601049448 hasConceptScore W2601049448C186108316 @default.
- W2601049448 hasConceptScore W2601049448C195975749 @default.
- W2601049448 hasConceptScore W2601049448C29470771 @default.
- W2601049448 hasConceptScore W2601049448C41008148 @default.
- W2601049448 hasConceptScore W2601049448C523214423 @default.
- W2601049448 hasConceptScore W2601049448C58166 @default.
- W2601049448 hasConceptScore W2601049448C5941749 @default.
- W2601049448 hasConceptScore W2601049448C78519656 @default.
- W2601049448 hasConceptScore W2601049448C85617194 @default.
- W2601049448 hasFunder F4320329860 @default.
- W2601049448 hasIssue "5" @default.
- W2601049448 hasLocation W26010494481 @default.
- W2601049448 hasOpenAccess W2601049448 @default.
- W2601049448 hasPrimaryLocation W26010494481 @default.
- W2601049448 hasRelatedWork W1822851171 @default.
- W2601049448 hasRelatedWork W1870139526 @default.
- W2601049448 hasRelatedWork W2018980971 @default.
- W2601049448 hasRelatedWork W2045020369 @default.
- W2601049448 hasRelatedWork W2110526953 @default.
- W2601049448 hasRelatedWork W2132937254 @default.
- W2601049448 hasRelatedWork W2374147704 @default.
- W2601049448 hasRelatedWork W2889019101 @default.
- W2601049448 hasRelatedWork W32657058 @default.
- W2601049448 hasRelatedWork W4289262879 @default.
- W2601049448 hasVolume "231" @default.
- W2601049448 isParatext "false" @default.
- W2601049448 isRetracted "false" @default.
- W2601049448 magId "2601049448" @default.