Matches in SemOpenAlex for { <https://semopenalex.org/work/W2601890246> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2601890246 endingPage "6" @default.
- W2601890246 startingPage "6" @default.
- W2601890246 abstract "Abstract—Alzheimer’s disease (AD) is a brain disease that causes a slow decline in memory, thinking and reasoning skills. It represents a major public health problem. Magnetic Resonance Imaging (MRI) have shown that the brains of people with (AD) shrink significantly as the disease progresses. This shrinkage appears in specific brain regions such as the hippocampus which is a small, curved formation in the brain that plays an important role in the limbic system also involved in the formation of new memories and is also associated with learning and emotions. Medical information on brain MRI is used in detecting the abnormalities in physiological structures. Structural MRI measurements can detect and follow the evolution of brain atrophy which is a marker of the disease progression; therefore, it allows diagnosis and prediction of AD. The research’s main target is the early recognition of Alzheimer’s disease automatically, which will thereby avoid deterioration of the case resulting in complete brain damage stage. Alzheimer’s disease yields visible changes in the brain structures. The aim is to recognize if the patient belongs to Alzheimer’s disease category or a normal healthy person at an early stage.
 Initially, image pre-processing and features extraction techniques are applied including data reduction using Discrete Cosine Transform (DCT) and Cropping, then traditional classification techniques like Euclidean Distance, Chebyshev Distance, Cosine Distance, City Block Distance, and Black pixel counter, were applied on the resulting vectors for classification. Image pre-processing includes noise reduction, Gray-scale conversion and binary scale conversion were applied for the MRI images. Feature extraction techniques follow including cropping and low spatial frequency components (DCT). This paper aims to automatically recognize and detect Alzheimer’s infected brain using MRI, without the need of clinical expert. This early recognition would be helpful to postpone the disease progression and maintain it at an almost steady stage. It was concluded after collecting a dataset of 50 MRI , 25 for normal MRI and 25 for AD MRI that Chebyshev Distance classifier yielded the highest success rate in the recognition of Alzheimer’s disease with accuracy 94% compared to other classification techniques used where, Euclidean Distance is 91.6%, Cosine Distance is 86.8%, City block Distance is 89.6%, Correlation Distance is 86.4% and Black pixels counter is 90%." @default.
- W2601890246 created "2017-04-07" @default.
- W2601890246 creator A5073307837 @default.
- W2601890246 date "2017-03-30" @default.
- W2601890246 modified "2023-10-18" @default.
- W2601890246 title "Early Recognition of Alzheimer’s Disease using Brain MRI" @default.
- W2601890246 cites W1601510121 @default.
- W2601890246 cites W2037221767 @default.
- W2601890246 cites W2116510815 @default.
- W2601890246 cites W2140074909 @default.
- W2601890246 cites W2143285014 @default.
- W2601890246 cites W2171831801 @default.
- W2601890246 cites W3105285334 @default.
- W2601890246 cites W8870360 @default.
- W2601890246 doi "https://doi.org/10.24178/ijhm.2017.2.1.06" @default.
- W2601890246 hasPublicationYear "2017" @default.
- W2601890246 type Work @default.
- W2601890246 sameAs 2601890246 @default.
- W2601890246 citedByCount "0" @default.
- W2601890246 crossrefType "journal-article" @default.
- W2601890246 hasAuthorship W2601890246A5073307837 @default.
- W2601890246 hasBestOaLocation W26018902461 @default.
- W2601890246 hasConcept C126838900 @default.
- W2601890246 hasConcept C142724271 @default.
- W2601890246 hasConcept C143409427 @default.
- W2601890246 hasConcept C153180895 @default.
- W2601890246 hasConcept C154945302 @default.
- W2601890246 hasConcept C15744967 @default.
- W2601890246 hasConcept C169760540 @default.
- W2601890246 hasConcept C2779134260 @default.
- W2601890246 hasConcept C2779483572 @default.
- W2601890246 hasConcept C2781172350 @default.
- W2601890246 hasConcept C41008148 @default.
- W2601890246 hasConcept C71924100 @default.
- W2601890246 hasConceptScore W2601890246C126838900 @default.
- W2601890246 hasConceptScore W2601890246C142724271 @default.
- W2601890246 hasConceptScore W2601890246C143409427 @default.
- W2601890246 hasConceptScore W2601890246C153180895 @default.
- W2601890246 hasConceptScore W2601890246C154945302 @default.
- W2601890246 hasConceptScore W2601890246C15744967 @default.
- W2601890246 hasConceptScore W2601890246C169760540 @default.
- W2601890246 hasConceptScore W2601890246C2779134260 @default.
- W2601890246 hasConceptScore W2601890246C2779483572 @default.
- W2601890246 hasConceptScore W2601890246C2781172350 @default.
- W2601890246 hasConceptScore W2601890246C41008148 @default.
- W2601890246 hasConceptScore W2601890246C71924100 @default.
- W2601890246 hasIssue "1" @default.
- W2601890246 hasLocation W26018902461 @default.
- W2601890246 hasOpenAccess W2601890246 @default.
- W2601890246 hasPrimaryLocation W26018902461 @default.
- W2601890246 hasRelatedWork W1963672009 @default.
- W2601890246 hasRelatedWork W2008410347 @default.
- W2601890246 hasRelatedWork W2035785694 @default.
- W2601890246 hasRelatedWork W2037456436 @default.
- W2601890246 hasRelatedWork W2044702702 @default.
- W2601890246 hasRelatedWork W2145328419 @default.
- W2601890246 hasRelatedWork W2748952813 @default.
- W2601890246 hasRelatedWork W2899084033 @default.
- W2601890246 hasRelatedWork W3107474891 @default.
- W2601890246 hasRelatedWork W4318167018 @default.
- W2601890246 hasVolume "2" @default.
- W2601890246 isParatext "false" @default.
- W2601890246 isRetracted "false" @default.
- W2601890246 magId "2601890246" @default.
- W2601890246 workType "article" @default.