Matches in SemOpenAlex for { <https://semopenalex.org/work/W2601950294> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2601950294 abstract "Gaussian time-series models are often specified through their spectral density. Such models present several computational challenges, in particular because of the nonsparse nature of the covariance matrix. We derive a fast approximation of the likelihood for such models. We propose to sample from the approximate posterior (i.e., the prior times the approximate likelihood), and then to recover the exact posterior through importance sampling. We show that the variance of the importance sampling weights vanishes as the sample size goes to infinity. We explain why the approximate posterior may typically be multimodal, and we derive a Sequential Monte Carlo sampler based on an annealing sequence to sample from that target distribution. Performance of the overall approach is evaluated on simulated and real datasets. In addition, for one real-world dataset, we provide some numerical evidence that a Bayesian approach to semiparametric estimation of spectral density may provide more reasonable results than its frequentist counterparts. The article comes with supplementary materials, available online, that contain an Appendix with a proof of our main Theorem, a Python package that implements the proposed procedure, and the Ethernet dataset." @default.
- W2601950294 created "2017-04-07" @default.
- W2601950294 creator A5049392160 @default.
- W2601950294 creator A5054046209 @default.
- W2601950294 creator A5079569621 @default.
- W2601950294 date "2013-01-01" @default.
- W2601950294 modified "2023-09-24" @default.
- W2601950294 title "Computational aspects of Bayesian spectral density estimation" @default.
- W2601950294 hasPublicationYear "2013" @default.
- W2601950294 type Work @default.
- W2601950294 sameAs 2601950294 @default.
- W2601950294 citedByCount "0" @default.
- W2601950294 crossrefType "posted-content" @default.
- W2601950294 hasAuthorship W2601950294A5049392160 @default.
- W2601950294 hasAuthorship W2601950294A5054046209 @default.
- W2601950294 hasAuthorship W2601950294A5079569621 @default.
- W2601950294 hasConcept C105795698 @default.
- W2601950294 hasConcept C107673813 @default.
- W2601950294 hasConcept C111350023 @default.
- W2601950294 hasConcept C11413529 @default.
- W2601950294 hasConcept C121332964 @default.
- W2601950294 hasConcept C160234255 @default.
- W2601950294 hasConcept C162376815 @default.
- W2601950294 hasConcept C163716315 @default.
- W2601950294 hasConcept C167723999 @default.
- W2601950294 hasConcept C19499675 @default.
- W2601950294 hasConcept C28826006 @default.
- W2601950294 hasConcept C33923547 @default.
- W2601950294 hasConcept C41008148 @default.
- W2601950294 hasConcept C52740198 @default.
- W2601950294 hasConcept C57830394 @default.
- W2601950294 hasConcept C62520636 @default.
- W2601950294 hasConceptScore W2601950294C105795698 @default.
- W2601950294 hasConceptScore W2601950294C107673813 @default.
- W2601950294 hasConceptScore W2601950294C111350023 @default.
- W2601950294 hasConceptScore W2601950294C11413529 @default.
- W2601950294 hasConceptScore W2601950294C121332964 @default.
- W2601950294 hasConceptScore W2601950294C160234255 @default.
- W2601950294 hasConceptScore W2601950294C162376815 @default.
- W2601950294 hasConceptScore W2601950294C163716315 @default.
- W2601950294 hasConceptScore W2601950294C167723999 @default.
- W2601950294 hasConceptScore W2601950294C19499675 @default.
- W2601950294 hasConceptScore W2601950294C28826006 @default.
- W2601950294 hasConceptScore W2601950294C33923547 @default.
- W2601950294 hasConceptScore W2601950294C41008148 @default.
- W2601950294 hasConceptScore W2601950294C52740198 @default.
- W2601950294 hasConceptScore W2601950294C57830394 @default.
- W2601950294 hasConceptScore W2601950294C62520636 @default.
- W2601950294 hasLocation W26019502941 @default.
- W2601950294 hasOpenAccess W2601950294 @default.
- W2601950294 hasPrimaryLocation W26019502941 @default.
- W2601950294 hasRelatedWork W1788616518 @default.
- W2601950294 hasRelatedWork W1857729084 @default.
- W2601950294 hasRelatedWork W2091983797 @default.
- W2601950294 hasRelatedWork W2394656956 @default.
- W2601950294 hasRelatedWork W2512401777 @default.
- W2601950294 hasRelatedWork W2512851972 @default.
- W2601950294 hasRelatedWork W2608900305 @default.
- W2601950294 hasRelatedWork W2739217148 @default.
- W2601950294 hasRelatedWork W2766288353 @default.
- W2601950294 hasRelatedWork W2912819213 @default.
- W2601950294 hasRelatedWork W2951222995 @default.
- W2601950294 hasRelatedWork W2952813155 @default.
- W2601950294 hasRelatedWork W2953377880 @default.
- W2601950294 hasRelatedWork W2964250089 @default.
- W2601950294 hasRelatedWork W2967542826 @default.
- W2601950294 hasRelatedWork W2972178929 @default.
- W2601950294 hasRelatedWork W2978680884 @default.
- W2601950294 hasRelatedWork W3125333685 @default.
- W2601950294 hasRelatedWork W3161220943 @default.
- W2601950294 hasRelatedWork W1773085733 @default.
- W2601950294 isParatext "false" @default.
- W2601950294 isRetracted "false" @default.
- W2601950294 magId "2601950294" @default.
- W2601950294 workType "article" @default.