Matches in SemOpenAlex for { <https://semopenalex.org/work/W2601991635> ?p ?o ?g. }
- W2601991635 endingPage "715" @default.
- W2601991635 startingPage "697" @default.
- W2601991635 abstract "The shallow subsurface in urban areas is increasingly used by shallow geothermal energy systems as a renewable energy resource and as a cheap cooling medium, e.g. for building air conditioning. In combination with further anthropogenic activities, this results in altered thermal regimes in the subsurface and the so-called subsurface urban heat island effect. Successful thermal management of urban groundwater resources requires understanding the relative contributions of the different thermal parameters and boundary conditions that result in the “present thermal state” of individual urban groundwater bodies. To evaluate the “present thermal state” of urban groundwater bodies, good quality data are required to characterize the hydraulic and thermal aquifer parameters. This process also involved adequate monitoring systems which provide consistent subsurface temperature measurements and are the basis for parameterizing numerical heat-transport models. This study is based on previous work already published for two urban groundwater bodies in Basel (CH) and Zaragoza (ES), where comprehensive monitoring networks (hydraulics and temperature) as well as calibrated high-resolution numerical flow- and heat-transport models have been analyzed. The “present thermal state” and how it developed according to the different hydraulic and thermal boundary conditions is compared to a “potential natural state” in order to assess the anthropogenic thermal changes that have already occurred in the urban groundwater bodies we investigated. This comparison allows us to describe the various processes concerning groundwater flow and thermal regimes for the different urban settings. Furthermore, the results facilitate defining goals for specific aquifer regions, including future aquifer use and urbanization, as well as evaluating the thermal use potential for these regions. As one example for a more sustainable thermal use of subsurface water resources, we introduce the thermal management concept of the “relaxation factor”, which is a first approach to overcome the present policy of “first come, first served”. Remediation measures to regenerate overheated urban aquifers are also introduced. The transferability of the applied methods to other urban areas is discussed. It is shown that an appropriate selection of locations for monitoring hydraulic and thermal boundary conditions make it possible to implement representative interpretations of groundwater flow and thermal regimes as well as to set up high-resolution numerical flow- and heat-transport models. Those models are the basis for the sustainable management of thermal resources." @default.
- W2601991635 created "2017-04-07" @default.
- W2601991635 creator A5001026758 @default.
- W2601991635 creator A5025014209 @default.
- W2601991635 creator A5054846526 @default.
- W2601991635 creator A5055593358 @default.
- W2601991635 creator A5072017360 @default.
- W2601991635 date "2017-05-01" @default.
- W2601991635 modified "2023-10-18" @default.
- W2601991635 title "Development of concepts for the management of thermal resources in urban areas – Assessment of transferability from the Basel (Switzerland) and Zaragoza (Spain) case studies" @default.
- W2601991635 cites W1516486789 @default.
- W2601991635 cites W1531947643 @default.
- W2601991635 cites W1815382214 @default.
- W2601991635 cites W1965190544 @default.
- W2601991635 cites W1972996329 @default.
- W2601991635 cites W1975032128 @default.
- W2601991635 cites W1981809920 @default.
- W2601991635 cites W1985826593 @default.
- W2601991635 cites W1990155928 @default.
- W2601991635 cites W2000616093 @default.
- W2601991635 cites W2004122507 @default.
- W2601991635 cites W2011737511 @default.
- W2601991635 cites W2011939095 @default.
- W2601991635 cites W2016469642 @default.
- W2601991635 cites W2022112597 @default.
- W2601991635 cites W2022650679 @default.
- W2601991635 cites W2022856871 @default.
- W2601991635 cites W2033392720 @default.
- W2601991635 cites W2033687657 @default.
- W2601991635 cites W2033945606 @default.
- W2601991635 cites W2047100834 @default.
- W2601991635 cites W2049585393 @default.
- W2601991635 cites W2055097880 @default.
- W2601991635 cites W2061033771 @default.
- W2601991635 cites W2080791384 @default.
- W2601991635 cites W2094470803 @default.
- W2601991635 cites W2097685787 @default.
- W2601991635 cites W2101541824 @default.
- W2601991635 cites W2113279443 @default.
- W2601991635 cites W2117291171 @default.
- W2601991635 cites W2130084108 @default.
- W2601991635 cites W2151966753 @default.
- W2601991635 cites W2153402618 @default.
- W2601991635 cites W2161624880 @default.
- W2601991635 cites W2161637539 @default.
- W2601991635 cites W2166927594 @default.
- W2601991635 cites W2261504789 @default.
- W2601991635 cites W2273046635 @default.
- W2601991635 cites W2327184392 @default.
- W2601991635 cites W255719701 @default.
- W2601991635 cites W2908307887 @default.
- W2601991635 doi "https://doi.org/10.1016/j.jhydrol.2017.03.057" @default.
- W2601991635 hasPublicationYear "2017" @default.
- W2601991635 type Work @default.
- W2601991635 sameAs 2601991635 @default.
- W2601991635 citedByCount "55" @default.
- W2601991635 countsByYear W26019916352017 @default.
- W2601991635 countsByYear W26019916352018 @default.
- W2601991635 countsByYear W26019916352019 @default.
- W2601991635 countsByYear W26019916352020 @default.
- W2601991635 countsByYear W26019916352021 @default.
- W2601991635 countsByYear W26019916352022 @default.
- W2601991635 countsByYear W26019916352023 @default.
- W2601991635 crossrefType "journal-article" @default.
- W2601991635 hasAuthorship W2601991635A5001026758 @default.
- W2601991635 hasAuthorship W2601991635A5025014209 @default.
- W2601991635 hasAuthorship W2601991635A5054846526 @default.
- W2601991635 hasAuthorship W2601991635A5055593358 @default.
- W2601991635 hasAuthorship W2601991635A5072017360 @default.
- W2601991635 hasConcept C127313418 @default.
- W2601991635 hasConcept C131227075 @default.
- W2601991635 hasConcept C153294291 @default.
- W2601991635 hasConcept C187320778 @default.
- W2601991635 hasConcept C204530211 @default.
- W2601991635 hasConcept C205649164 @default.
- W2601991635 hasConcept C39432304 @default.
- W2601991635 hasConcept C75622301 @default.
- W2601991635 hasConcept C76177295 @default.
- W2601991635 hasConcept C76886044 @default.
- W2601991635 hasConceptScore W2601991635C127313418 @default.
- W2601991635 hasConceptScore W2601991635C131227075 @default.
- W2601991635 hasConceptScore W2601991635C153294291 @default.
- W2601991635 hasConceptScore W2601991635C187320778 @default.
- W2601991635 hasConceptScore W2601991635C204530211 @default.
- W2601991635 hasConceptScore W2601991635C205649164 @default.
- W2601991635 hasConceptScore W2601991635C39432304 @default.
- W2601991635 hasConceptScore W2601991635C75622301 @default.
- W2601991635 hasConceptScore W2601991635C76177295 @default.
- W2601991635 hasConceptScore W2601991635C76886044 @default.
- W2601991635 hasLocation W26019916351 @default.
- W2601991635 hasOpenAccess W2601991635 @default.
- W2601991635 hasPrimaryLocation W26019916351 @default.
- W2601991635 hasRelatedWork W1573429580 @default.
- W2601991635 hasRelatedWork W2063834533 @default.
- W2601991635 hasRelatedWork W2145150060 @default.
- W2601991635 hasRelatedWork W2161065207 @default.
- W2601991635 hasRelatedWork W2327648300 @default.
- W2601991635 hasRelatedWork W2527541643 @default.