Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602056545> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2602056545 abstract "Author(s): Hofree, Matan | Advisor(s): Ideker, Trey | Abstract: Genome-wide measurements of genomic state offer unprecedented opportunities for biological discovery, with potential to make dramatic impact on medicine and life. One fundamental challenge is associating complex phenotypes with genetic cause. Here, I will describe efforts to advance solutions to this challenge via analysis of gene networks. Genome-wide association studies are designed link between a phenotype and genomic loci anywhere in the genome; however, applying standard statistics to such data has fallen far short of building accurate predictive models for disease. We use Adaboost, a large-margin classification algorithm, to predict disease status in two cohorts of diabetes and suggest a method for overcoming limitations arising from correlation between genetic variants. We uncover a novel set of 163 disease-associations, missed by `classic' statistics. Classification of cancer remains predominantly organ based and fails to account for considerable heterogeneity of outcomes. Tumor genomes provide a new source of data for uncovering subtypes, but are difficult to compare, as tumors share few mutations in common. We introduce network-based stratification (NBS), a method for integrating somatic genomes with networks encoding biological knowledge. This allows for identification of cancer subtypes by clustering tumors with mutations in similar network regions. We demonstrate NBS in multiple cancer cohorts, identifying subtypes predictive of clinical features and outcomes, and highlighting sub-networks characteristic of each.Current approaches for identifying cancer genes rely on the idea that particular perturbations, occurring in a subset of genes unique to each cancer type, are selected for by conferring a survival advantage to tumor cells. Such genes are expected to be enriched for mutations when examined across a population. Here we show that 30-50% of well-known cancer genes are not significantly elevated in mutation frequency. Despite this lack of enrichment, known cancer genes are enriched for mutations causing changes in amino-acid composition, protein structure properties and conservation. Furthermore, we observe 15-30% of cancer genes have altered mutation rates conditioned on other genes, each individually spanning the range of single-gene mutation frequencies, implicating a large genetic interaction network underlying human cancer. This suggests a substantial number of cancer genes will never be identified by frequency alone." @default.
- W2602056545 created "2017-04-07" @default.
- W2602056545 creator A5045028116 @default.
- W2602056545 date "2014-01-01" @default.
- W2602056545 modified "2023-09-24" @default.
- W2602056545 title "Analysis of genomic variants via gene networks" @default.
- W2602056545 hasPublicationYear "2014" @default.
- W2602056545 type Work @default.
- W2602056545 sameAs 2602056545 @default.
- W2602056545 citedByCount "0" @default.
- W2602056545 crossrefType "journal-article" @default.
- W2602056545 hasAuthorship W2602056545A5045028116 @default.
- W2602056545 hasConcept C104317684 @default.
- W2602056545 hasConcept C106208931 @default.
- W2602056545 hasConcept C116834253 @default.
- W2602056545 hasConcept C135763542 @default.
- W2602056545 hasConcept C141231307 @default.
- W2602056545 hasConcept C142724271 @default.
- W2602056545 hasConcept C153209595 @default.
- W2602056545 hasConcept C163763905 @default.
- W2602056545 hasConcept C189206191 @default.
- W2602056545 hasConcept C2779134260 @default.
- W2602056545 hasConcept C28225019 @default.
- W2602056545 hasConcept C54355233 @default.
- W2602056545 hasConcept C59822182 @default.
- W2602056545 hasConcept C70721500 @default.
- W2602056545 hasConcept C71924100 @default.
- W2602056545 hasConcept C86803240 @default.
- W2602056545 hasConceptScore W2602056545C104317684 @default.
- W2602056545 hasConceptScore W2602056545C106208931 @default.
- W2602056545 hasConceptScore W2602056545C116834253 @default.
- W2602056545 hasConceptScore W2602056545C135763542 @default.
- W2602056545 hasConceptScore W2602056545C141231307 @default.
- W2602056545 hasConceptScore W2602056545C142724271 @default.
- W2602056545 hasConceptScore W2602056545C153209595 @default.
- W2602056545 hasConceptScore W2602056545C163763905 @default.
- W2602056545 hasConceptScore W2602056545C189206191 @default.
- W2602056545 hasConceptScore W2602056545C2779134260 @default.
- W2602056545 hasConceptScore W2602056545C28225019 @default.
- W2602056545 hasConceptScore W2602056545C54355233 @default.
- W2602056545 hasConceptScore W2602056545C59822182 @default.
- W2602056545 hasConceptScore W2602056545C70721500 @default.
- W2602056545 hasConceptScore W2602056545C71924100 @default.
- W2602056545 hasConceptScore W2602056545C86803240 @default.
- W2602056545 hasLocation W26020565451 @default.
- W2602056545 hasOpenAccess W2602056545 @default.
- W2602056545 hasPrimaryLocation W26020565451 @default.
- W2602056545 hasRelatedWork W1486601546 @default.
- W2602056545 hasRelatedWork W1506359583 @default.
- W2602056545 hasRelatedWork W1976393979 @default.
- W2602056545 hasRelatedWork W1996294093 @default.
- W2602056545 hasRelatedWork W2012480989 @default.
- W2602056545 hasRelatedWork W2016301101 @default.
- W2602056545 hasRelatedWork W2022796482 @default.
- W2602056545 hasRelatedWork W2036382872 @default.
- W2602056545 hasRelatedWork W2084715903 @default.
- W2602056545 hasRelatedWork W2279571053 @default.
- W2602056545 hasRelatedWork W2289250433 @default.
- W2602056545 hasRelatedWork W2327159812 @default.
- W2602056545 hasRelatedWork W2410038558 @default.
- W2602056545 hasRelatedWork W2742600815 @default.
- W2602056545 hasRelatedWork W2953222521 @default.
- W2602056545 hasRelatedWork W3005469082 @default.
- W2602056545 hasRelatedWork W3097237895 @default.
- W2602056545 hasRelatedWork W3102036955 @default.
- W2602056545 hasRelatedWork W3164907662 @default.
- W2602056545 isParatext "false" @default.
- W2602056545 isRetracted "false" @default.
- W2602056545 magId "2602056545" @default.
- W2602056545 workType "article" @default.