Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602119629> ?p ?o ?g. }
- W2602119629 endingPage "230" @default.
- W2602119629 startingPage "201" @default.
- W2602119629 abstract "In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution.As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O3) and nitrogen dioxide (NO2) of participants' residences in Montreal, 1991-2002.We used the following methods to predict spatially-resolved daily concentrations of O3 and NO2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement.We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O3 and NO2. On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O3 and 108ppb for NO2. For both pollutants, better agreement was found between predictions from the nearest monitor and the inverse-distance weighting interpolation methods, with ICCs of 0.89 (95% confidence interval (CI): 0.89, 0.89) for O3 and 0.81 (95%CI: 0.80, 0.81) for NO2, respectively. For this pair of methods the maximum difference on a given day and postal code area was 36ppb for O3 and 74ppb for NO2. The back-extrapolation method showed a higher degree of disagreement with the nearest monitor approach, inverse-distance weighting interpolation, and the Bayesian maximum entropy model, which were strongly constrained by the sparse monitoring network. The maps showed that the patterns of agreement differed across the postal code areas and the variability depended on the pair of methods compared and the pollutants. For O3, but not NO2, postal areas showing greater disagreement were mostly located near the city centre and along highways, especially in maps involving the back-extrapolation method.In view of the substantial differences in daily concentrations of O3 and NO2 predicted by the different methods, we suggest that analyses of the health effects from air pollution should make use of multiple exposure assessment methods. Although we cannot make any recommendations as to which is the most valid method, models that make use of higher spatially resolved data, such as from dense exposure surveys or from high spatial resolution satellite data, likely provide the most valid estimates." @default.
- W2602119629 created "2017-04-07" @default.
- W2602119629 creator A5010423523 @default.
- W2602119629 creator A5014008526 @default.
- W2602119629 creator A5027861027 @default.
- W2602119629 creator A5032852812 @default.
- W2602119629 creator A5036049271 @default.
- W2602119629 creator A5047899064 @default.
- W2602119629 creator A5067544481 @default.
- W2602119629 creator A5086319041 @default.
- W2602119629 date "2017-07-01" @default.
- W2602119629 modified "2023-10-07" @default.
- W2602119629 title "Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada" @default.
- W2602119629 cites W1846027874 @default.
- W2602119629 cites W1966313220 @default.
- W2602119629 cites W1967297182 @default.
- W2602119629 cites W1970034271 @default.
- W2602119629 cites W1970959325 @default.
- W2602119629 cites W1971270699 @default.
- W2602119629 cites W1976519927 @default.
- W2602119629 cites W1976991085 @default.
- W2602119629 cites W1984470640 @default.
- W2602119629 cites W1993145124 @default.
- W2602119629 cites W1994711945 @default.
- W2602119629 cites W1999076532 @default.
- W2602119629 cites W2001756350 @default.
- W2602119629 cites W2002094444 @default.
- W2602119629 cites W2004370310 @default.
- W2602119629 cites W2012682248 @default.
- W2602119629 cites W2015795623 @default.
- W2602119629 cites W2017308498 @default.
- W2602119629 cites W2024510125 @default.
- W2602119629 cites W2031137003 @default.
- W2602119629 cites W2041625291 @default.
- W2602119629 cites W2046651358 @default.
- W2602119629 cites W2053255375 @default.
- W2602119629 cites W2054036439 @default.
- W2602119629 cites W2065947772 @default.
- W2602119629 cites W2066693984 @default.
- W2602119629 cites W2067724039 @default.
- W2602119629 cites W2070211164 @default.
- W2602119629 cites W2070535949 @default.
- W2602119629 cites W2072620344 @default.
- W2602119629 cites W2076628643 @default.
- W2602119629 cites W2076634454 @default.
- W2602119629 cites W2084232990 @default.
- W2602119629 cites W2084837516 @default.
- W2602119629 cites W2087758129 @default.
- W2602119629 cites W2091210521 @default.
- W2602119629 cites W2092981979 @default.
- W2602119629 cites W2098637521 @default.
- W2602119629 cites W2106750048 @default.
- W2602119629 cites W2106829579 @default.
- W2602119629 cites W2107466340 @default.
- W2602119629 cites W2137481238 @default.
- W2602119629 cites W2141403362 @default.
- W2602119629 cites W2147726813 @default.
- W2602119629 cites W2156762605 @default.
- W2602119629 cites W2164362147 @default.
- W2602119629 cites W2164777277 @default.
- W2602119629 cites W2169707207 @default.
- W2602119629 cites W2174800157 @default.
- W2602119629 cites W2191373656 @default.
- W2602119629 cites W2302302620 @default.
- W2602119629 cites W2309126352 @default.
- W2602119629 cites W2314998857 @default.
- W2602119629 cites W2334392363 @default.
- W2602119629 cites W2336797181 @default.
- W2602119629 cites W2341710399 @default.
- W2602119629 cites W2345408346 @default.
- W2602119629 doi "https://doi.org/10.1016/j.envres.2017.03.017" @default.
- W2602119629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28359040" @default.
- W2602119629 hasPublicationYear "2017" @default.
- W2602119629 type Work @default.
- W2602119629 sameAs 2602119629 @default.
- W2602119629 citedByCount "13" @default.
- W2602119629 countsByYear W26021196292017 @default.
- W2602119629 countsByYear W26021196292018 @default.
- W2602119629 countsByYear W26021196292019 @default.
- W2602119629 countsByYear W26021196292020 @default.
- W2602119629 countsByYear W26021196292021 @default.
- W2602119629 countsByYear W26021196292022 @default.
- W2602119629 countsByYear W26021196292023 @default.
- W2602119629 crossrefType "journal-article" @default.
- W2602119629 hasAuthorship W2602119629A5010423523 @default.
- W2602119629 hasAuthorship W2602119629A5014008526 @default.
- W2602119629 hasAuthorship W2602119629A5027861027 @default.
- W2602119629 hasAuthorship W2602119629A5032852812 @default.
- W2602119629 hasAuthorship W2602119629A5036049271 @default.
- W2602119629 hasAuthorship W2602119629A5047899064 @default.
- W2602119629 hasAuthorship W2602119629A5067544481 @default.
- W2602119629 hasAuthorship W2602119629A5086319041 @default.
- W2602119629 hasConcept C105795698 @default.
- W2602119629 hasConcept C127313418 @default.
- W2602119629 hasConcept C132459708 @default.
- W2602119629 hasConcept C153294291 @default.
- W2602119629 hasConcept C184898388 @default.
- W2602119629 hasConcept C18903297 @default.