Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602435482> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2602435482 abstract "Abstract This work is focused on exploring the applicability of intelligent methods in assessing porosity and permeability in the context of reservoir characterization. The main motivation underlying our study is that appropriate estimation of reservoir petrophysical parameters such as porosity and/or permeability is a key step for in-situ hydrocarbon reservoir evaluation. We ground our analysis on information on log-depth, caliper, conductivity, sonic logging, natural gamma, density and neutron porosity, water saturation, percentage of shale volume, and type of lithology collected from well loggings in an oil field in the middle-east (a total number of 11 exploratory wells are considered). Data also include porosities and permeabilities evaluated on core samples from the same wells. All these data are embedded in a neural network-based approach which enables us to establish input-output relationships in terms of an optimized number of input variables. Three diverse intelligent techniques are tested. These include: (i) classical artificial neural networks; (ii) artificial neural networks based on principal component analysis (PCA) transformation; and (iii) statistical neural networks based on a bagging approach. Our results suggest that the statistical neural network is most effective for the field setting considered. The application of this neural network with 9 input parameters provides reliable performances in 94% and 81% of the cases, respectively in the training and validation phases, for the estimation of porosity. A trained network with 10 input parameters leads to successfull reproduction of permeability values in 85% and 79.5% of the cases, respectively during training and validation of the network. Results from this study are expected to be transferable to applications involving evaluation of petrophysical properties of a target reservoir in the presence of incomplete well log datasets." @default.
- W2602435482 created "2017-04-07" @default.
- W2602435482 creator A5043309612 @default.
- W2602435482 creator A5071168995 @default.
- W2602435482 creator A5081864224 @default.
- W2602435482 creator A5086207486 @default.
- W2602435482 date "2017-04-05" @default.
- W2602435482 modified "2023-09-24" @default.
- W2602435482 title "Petrophysical Well Log Analysis through Intelligent Methods" @default.
- W2602435482 cites W1977846423 @default.
- W2602435482 cites W1980046581 @default.
- W2602435482 cites W1990476081 @default.
- W2602435482 cites W2004874932 @default.
- W2602435482 cites W2019660338 @default.
- W2602435482 cites W2023272428 @default.
- W2602435482 cites W2024392312 @default.
- W2602435482 cites W2037624159 @default.
- W2602435482 cites W2045900108 @default.
- W2602435482 cites W2053095410 @default.
- W2602435482 cites W2061069258 @default.
- W2602435482 cites W2065184281 @default.
- W2602435482 cites W2090294469 @default.
- W2602435482 cites W2155482699 @default.
- W2602435482 cites W2165096403 @default.
- W2602435482 cites W2170477311 @default.
- W2602435482 cites W2285257517 @default.
- W2602435482 cites W2419316164 @default.
- W2602435482 cites W2912934387 @default.
- W2602435482 cites W3146803896 @default.
- W2602435482 doi "https://doi.org/10.2118/185922-ms" @default.
- W2602435482 hasPublicationYear "2017" @default.
- W2602435482 type Work @default.
- W2602435482 sameAs 2602435482 @default.
- W2602435482 citedByCount "5" @default.
- W2602435482 countsByYear W26024354822020 @default.
- W2602435482 countsByYear W26024354822021 @default.
- W2602435482 crossrefType "proceedings-article" @default.
- W2602435482 hasAuthorship W2602435482A5043309612 @default.
- W2602435482 hasAuthorship W2602435482A5071168995 @default.
- W2602435482 hasAuthorship W2602435482A5081864224 @default.
- W2602435482 hasAuthorship W2602435482A5086207486 @default.
- W2602435482 hasBestOaLocation W26024354822 @default.
- W2602435482 hasConcept C124101348 @default.
- W2602435482 hasConcept C127313418 @default.
- W2602435482 hasConcept C14641988 @default.
- W2602435482 hasConcept C151730666 @default.
- W2602435482 hasConcept C154945302 @default.
- W2602435482 hasConcept C187320778 @default.
- W2602435482 hasConcept C27438332 @default.
- W2602435482 hasConcept C2779343474 @default.
- W2602435482 hasConcept C35817400 @default.
- W2602435482 hasConcept C41008148 @default.
- W2602435482 hasConcept C46293882 @default.
- W2602435482 hasConcept C50644808 @default.
- W2602435482 hasConcept C6648577 @default.
- W2602435482 hasConcept C78762247 @default.
- W2602435482 hasConceptScore W2602435482C124101348 @default.
- W2602435482 hasConceptScore W2602435482C127313418 @default.
- W2602435482 hasConceptScore W2602435482C14641988 @default.
- W2602435482 hasConceptScore W2602435482C151730666 @default.
- W2602435482 hasConceptScore W2602435482C154945302 @default.
- W2602435482 hasConceptScore W2602435482C187320778 @default.
- W2602435482 hasConceptScore W2602435482C27438332 @default.
- W2602435482 hasConceptScore W2602435482C2779343474 @default.
- W2602435482 hasConceptScore W2602435482C35817400 @default.
- W2602435482 hasConceptScore W2602435482C41008148 @default.
- W2602435482 hasConceptScore W2602435482C46293882 @default.
- W2602435482 hasConceptScore W2602435482C50644808 @default.
- W2602435482 hasConceptScore W2602435482C6648577 @default.
- W2602435482 hasConceptScore W2602435482C78762247 @default.
- W2602435482 hasLocation W26024354821 @default.
- W2602435482 hasLocation W26024354822 @default.
- W2602435482 hasOpenAccess W2602435482 @default.
- W2602435482 hasPrimaryLocation W26024354821 @default.
- W2602435482 hasRelatedWork W2027720860 @default.
- W2602435482 hasRelatedWork W2031363943 @default.
- W2602435482 hasRelatedWork W2047550609 @default.
- W2602435482 hasRelatedWork W2060465731 @default.
- W2602435482 hasRelatedWork W2066210005 @default.
- W2602435482 hasRelatedWork W2247603160 @default.
- W2602435482 hasRelatedWork W2553271262 @default.
- W2602435482 hasRelatedWork W2960115742 @default.
- W2602435482 hasRelatedWork W3035081470 @default.
- W2602435482 hasRelatedWork W4294681408 @default.
- W2602435482 isParatext "false" @default.
- W2602435482 isRetracted "false" @default.
- W2602435482 magId "2602435482" @default.
- W2602435482 workType "article" @default.