Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602467265> ?p ?o ?g. }
- W2602467265 endingPage "1048" @default.
- W2602467265 startingPage "1041" @default.
- W2602467265 abstract "ConspectusThe use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses.In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the “force-bearing scaffold” of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes.More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical strain in deformed molecules. We illustrate the usefulness of the JEDI analysis by rationalizing the finding that a knot tremendously weakens a polymer strand via a “choking” motion of the torsions in the curved part of the knot, thus leading to facilitated bond rupture in the immediate vicinity of the knot. Moreover, we demonstrate that the JEDI analysis can be exploited to devise methods for the stabilization of inherently strained molecules. In addition to applications in the electronic ground state, the JEDI analysis can also be used in the electronically excited state to determine the mechanical energy that a molecular photoswitch can release into its environment during photoisomerization. This approach allows the quantification of the mechanical efficiency of a photoswitch, i.e., the part of the energy that becomes available for the motion into a specific direction, which enables us to judge whether a photoswitch is capable of performing a desired switching function." @default.
- W2602467265 created "2017-04-07" @default.
- W2602467265 creator A5037929085 @default.
- W2602467265 creator A5047451884 @default.
- W2602467265 date "2017-03-24" @default.
- W2602467265 modified "2023-10-11" @default.
- W2602467265 title "Quantum Chemical Strain Analysis For Mechanochemical Processes" @default.
- W2602467265 cites W1034338475 @default.
- W2602467265 cites W1542243548 @default.
- W2602467265 cites W1559264985 @default.
- W2602467265 cites W1604927323 @default.
- W2602467265 cites W1969133415 @default.
- W2602467265 cites W1982356449 @default.
- W2602467265 cites W1986700456 @default.
- W2602467265 cites W1993132297 @default.
- W2602467265 cites W1998913648 @default.
- W2602467265 cites W2004023846 @default.
- W2602467265 cites W2019867440 @default.
- W2602467265 cites W2023271753 @default.
- W2602467265 cites W2026172453 @default.
- W2602467265 cites W2027147151 @default.
- W2602467265 cites W2043411616 @default.
- W2602467265 cites W2043412192 @default.
- W2602467265 cites W2043858812 @default.
- W2602467265 cites W2046412723 @default.
- W2602467265 cites W2048948454 @default.
- W2602467265 cites W2051146701 @default.
- W2602467265 cites W2053925793 @default.
- W2602467265 cites W2062490158 @default.
- W2602467265 cites W2069006374 @default.
- W2602467265 cites W2072413317 @default.
- W2602467265 cites W2080455157 @default.
- W2602467265 cites W2083827540 @default.
- W2602467265 cites W2086650661 @default.
- W2602467265 cites W2091277773 @default.
- W2602467265 cites W2095859689 @default.
- W2602467265 cites W2106451564 @default.
- W2602467265 cites W2119728532 @default.
- W2602467265 cites W2128868542 @default.
- W2602467265 cites W2129908171 @default.
- W2602467265 cites W2130095449 @default.
- W2602467265 cites W2146341028 @default.
- W2602467265 cites W2158208080 @default.
- W2602467265 cites W2159582789 @default.
- W2602467265 cites W2165853772 @default.
- W2602467265 cites W2185783735 @default.
- W2602467265 cites W2306103836 @default.
- W2602467265 cites W2315897910 @default.
- W2602467265 cites W2321380837 @default.
- W2602467265 cites W2325095698 @default.
- W2602467265 cites W2399890466 @default.
- W2602467265 cites W2514167073 @default.
- W2602467265 cites W2538107598 @default.
- W2602467265 cites W4230335533 @default.
- W2602467265 doi "https://doi.org/10.1021/acs.accounts.7b00038" @default.
- W2602467265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28339186" @default.
- W2602467265 hasPublicationYear "2017" @default.
- W2602467265 type Work @default.
- W2602467265 sameAs 2602467265 @default.
- W2602467265 citedByCount "34" @default.
- W2602467265 countsByYear W26024672652017 @default.
- W2602467265 countsByYear W26024672652018 @default.
- W2602467265 countsByYear W26024672652019 @default.
- W2602467265 countsByYear W26024672652020 @default.
- W2602467265 countsByYear W26024672652021 @default.
- W2602467265 countsByYear W26024672652022 @default.
- W2602467265 countsByYear W26024672652023 @default.
- W2602467265 crossrefType "journal-article" @default.
- W2602467265 hasAuthorship W2602467265A5037929085 @default.
- W2602467265 hasAuthorship W2602467265A5047451884 @default.
- W2602467265 hasConcept C107240024 @default.
- W2602467265 hasConcept C112887158 @default.
- W2602467265 hasConcept C121332964 @default.
- W2602467265 hasConcept C147597530 @default.
- W2602467265 hasConcept C159467904 @default.
- W2602467265 hasConcept C163258240 @default.
- W2602467265 hasConcept C171250308 @default.
- W2602467265 hasConcept C178213299 @default.
- W2602467265 hasConcept C178790620 @default.
- W2602467265 hasConcept C180577832 @default.
- W2602467265 hasConcept C185592680 @default.
- W2602467265 hasConcept C192562407 @default.
- W2602467265 hasConcept C22547674 @default.
- W2602467265 hasConcept C32909587 @default.
- W2602467265 hasConcept C508816927 @default.
- W2602467265 hasConcept C62520636 @default.
- W2602467265 hasConcept C84114770 @default.
- W2602467265 hasConcept C89025888 @default.
- W2602467265 hasConceptScore W2602467265C107240024 @default.
- W2602467265 hasConceptScore W2602467265C112887158 @default.
- W2602467265 hasConceptScore W2602467265C121332964 @default.
- W2602467265 hasConceptScore W2602467265C147597530 @default.
- W2602467265 hasConceptScore W2602467265C159467904 @default.
- W2602467265 hasConceptScore W2602467265C163258240 @default.
- W2602467265 hasConceptScore W2602467265C171250308 @default.
- W2602467265 hasConceptScore W2602467265C178213299 @default.
- W2602467265 hasConceptScore W2602467265C178790620 @default.
- W2602467265 hasConceptScore W2602467265C180577832 @default.