Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602541893> ?p ?o ?g. }
- W2602541893 endingPage "6343" @default.
- W2602541893 startingPage "6330" @default.
- W2602541893 abstract "In this paper, we present a novel method for assimilating geometric information from observed images. Image assimilation technology fully utilizes structural information from the dynamics of the images to retrieve the state of a system and thus to better predict its evolution. Level-set method describing the evolution of the geometry shapes of a given system is taken into account to include the dynamics of the images. This method takes advantage of Lagrangian information in an Eulerian numerical framework. In our numerical experiments, we apply this state-of-the-art technique to a pollutant transport problem, to calibrate the initial contours of pollutants and to identify diffusion coefficients of the model. It can be shown a potential approach for oil spills, because topological merging and breaking of oil slicks are well defined and easily performed by this proposed approach. Numerical results show that the proposed method is visibly efficient compared with the classical method based on the concentration map when the concentration measurements and the background fields are not well available." @default.
- W2602541893 created "2017-04-07" @default.
- W2602541893 creator A5032015670 @default.
- W2602541893 creator A5063764547 @default.
- W2602541893 creator A5078652354 @default.
- W2602541893 creator A5082772005 @default.
- W2602541893 date "2017-11-01" @default.
- W2602541893 modified "2023-10-14" @default.
- W2602541893 title "A Level-Set-Based Image Assimilation Method: Potential Applications for Predicting the Movement of Oil Spills" @default.
- W2602541893 cites W1578285471 @default.
- W2602541893 cites W1985706996 @default.
- W2602541893 cites W1988248287 @default.
- W2602541893 cites W1991113069 @default.
- W2602541893 cites W1994875376 @default.
- W2602541893 cites W1996603689 @default.
- W2602541893 cites W2000759998 @default.
- W2602541893 cites W2012276822 @default.
- W2602541893 cites W2015162183 @default.
- W2602541893 cites W2020070535 @default.
- W2602541893 cites W2051434435 @default.
- W2602541893 cites W2054659912 @default.
- W2602541893 cites W2056431159 @default.
- W2602541893 cites W2075847053 @default.
- W2602541893 cites W2077567018 @default.
- W2602541893 cites W2078031695 @default.
- W2602541893 cites W2079578802 @default.
- W2602541893 cites W2093834886 @default.
- W2602541893 cites W2103854834 @default.
- W2602541893 cites W2105542305 @default.
- W2602541893 cites W2112729030 @default.
- W2602541893 cites W2114666101 @default.
- W2602541893 cites W2115528090 @default.
- W2602541893 cites W2142572935 @default.
- W2602541893 cites W2145023731 @default.
- W2602541893 cites W2152328854 @default.
- W2602541893 cites W2167419749 @default.
- W2602541893 cites W2170369608 @default.
- W2602541893 cites W2258838202 @default.
- W2602541893 cites W2470057476 @default.
- W2602541893 cites W3010292040 @default.
- W2602541893 cites W4252580741 @default.
- W2602541893 doi "https://doi.org/10.1109/tgrs.2017.2726013" @default.
- W2602541893 hasPublicationYear "2017" @default.
- W2602541893 type Work @default.
- W2602541893 sameAs 2602541893 @default.
- W2602541893 citedByCount "9" @default.
- W2602541893 countsByYear W26025418932018 @default.
- W2602541893 countsByYear W26025418932019 @default.
- W2602541893 countsByYear W26025418932020 @default.
- W2602541893 countsByYear W26025418932021 @default.
- W2602541893 countsByYear W26025418932022 @default.
- W2602541893 countsByYear W26025418932023 @default.
- W2602541893 crossrefType "journal-article" @default.
- W2602541893 hasAuthorship W2602541893A5032015670 @default.
- W2602541893 hasAuthorship W2602541893A5063764547 @default.
- W2602541893 hasAuthorship W2602541893A5078652354 @default.
- W2602541893 hasAuthorship W2602541893A5082772005 @default.
- W2602541893 hasBestOaLocation W26025418932 @default.
- W2602541893 hasConcept C11413529 @default.
- W2602541893 hasConcept C115961682 @default.
- W2602541893 hasConcept C121332964 @default.
- W2602541893 hasConcept C126255220 @default.
- W2602541893 hasConcept C127313418 @default.
- W2602541893 hasConcept C153294291 @default.
- W2602541893 hasConcept C154945302 @default.
- W2602541893 hasConcept C177264268 @default.
- W2602541893 hasConcept C199360897 @default.
- W2602541893 hasConcept C24552861 @default.
- W2602541893 hasConcept C28826006 @default.
- W2602541893 hasConcept C2985668151 @default.
- W2602541893 hasConcept C33923547 @default.
- W2602541893 hasConcept C41008148 @default.
- W2602541893 hasConcept C43058520 @default.
- W2602541893 hasConcept C53469067 @default.
- W2602541893 hasConcept C78762247 @default.
- W2602541893 hasConceptScore W2602541893C11413529 @default.
- W2602541893 hasConceptScore W2602541893C115961682 @default.
- W2602541893 hasConceptScore W2602541893C121332964 @default.
- W2602541893 hasConceptScore W2602541893C126255220 @default.
- W2602541893 hasConceptScore W2602541893C127313418 @default.
- W2602541893 hasConceptScore W2602541893C153294291 @default.
- W2602541893 hasConceptScore W2602541893C154945302 @default.
- W2602541893 hasConceptScore W2602541893C177264268 @default.
- W2602541893 hasConceptScore W2602541893C199360897 @default.
- W2602541893 hasConceptScore W2602541893C24552861 @default.
- W2602541893 hasConceptScore W2602541893C28826006 @default.
- W2602541893 hasConceptScore W2602541893C2985668151 @default.
- W2602541893 hasConceptScore W2602541893C33923547 @default.
- W2602541893 hasConceptScore W2602541893C41008148 @default.
- W2602541893 hasConceptScore W2602541893C43058520 @default.
- W2602541893 hasConceptScore W2602541893C53469067 @default.
- W2602541893 hasConceptScore W2602541893C78762247 @default.
- W2602541893 hasFunder F4320321001 @default.
- W2602541893 hasFunder F4320335787 @default.
- W2602541893 hasIssue "11" @default.
- W2602541893 hasLocation W26025418931 @default.
- W2602541893 hasLocation W26025418932 @default.
- W2602541893 hasLocation W26025418933 @default.