Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602578082> ?p ?o ?g. }
- W2602578082 endingPage "033040" @default.
- W2602578082 startingPage "033040" @default.
- W2602578082 abstract "Abstract The generation of extreme-ultraviolet (XUV) isolated attosecond pulses (IAPs) has enabled experimental access to the fastest phenomena in nature observed so far, namely the dynamics of electrons in atoms, molecules and solids. However, nowadays the highest repetition rates at which IAPs can be generated lies in the <?CDATA $mathrm{kHz}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>kHz</mml:mi> </mml:math> range. This represents a rather severe restriction for numerous experiments involving the detection of charged particles, where the desired number of generated particles per shot is limited by space charge effects to ideally one. Here, we present a theoretical study on the possibility of efficiently producing IAPs at multi- <?CDATA $mathrm{MHz}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>MHz</mml:mi> </mml:math> repetition rates via cavity-enhanced high-harmonic generation (HHG). To this end, we assume parameters of state-of-the-art Yb-based femtosecond laser technology to evaluate several time-gating methods which could generate IAPs in enhancement cavities. We identify polarization gating and a new method, employing non-collinear optical gating in a tailored transverse cavity mode, as suitable candidates and analyze these via extensive numerical modeling. The latter, which we dub transverse mode gating (TMG) promises the highest efficiency and robustness. Assuming 0.7 <?CDATA $mu {rm{J}}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>μ</mml:mi> <mml:mi mathvariant=normal>J</mml:mi> </mml:math> , 5-cycle pulses from the seeding laser and a state-of-the-art enhancement cavity, we show that TMG bares the potential to generate IAPs with photon energies around <?CDATA $100,mathrm{eV}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mn>100</mml:mn> <mml:mspace width=0.25em /> <mml:mi>eV</mml:mi> </mml:math> and a photon flux of at least <?CDATA ${10}^{8},mathrm{photons},{{rm{s}}}^{-1}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>8</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width=0.25em /> <mml:mi>photons</mml:mi> <mml:mspace width=0.25em /> <mml:msup> <mml:mrow> <mml:mi mathvariant=normal>s</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> at repetition rates of <?CDATA $10,mathrm{MHz}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mn>10</mml:mn> <mml:mspace width=0.25em /> <mml:mi>MHz</mml:mi> </mml:math> and higher. This result reveals a roadmap towards a dramatic decrease in measurement time (and, equivalently, an increase in the signal-to-noise ratio) in photoelectron spectroscopy and microscopy. In particular, it paves the way to combining attosecond streaking with photoelectron emission microscopy, affording, for the first time, the spatially and temporally resolved observation of plasmonic fields in nanostructures. Furthermore, it promises the generation of frequency combs with an unprecedented bandwidth for XUV precision spectroscopy." @default.
- W2602578082 created "2017-04-07" @default.
- W2602578082 creator A5031597891 @default.
- W2602578082 creator A5068088238 @default.
- W2602578082 creator A5084605608 @default.
- W2602578082 date "2017-03-01" @default.
- W2602578082 modified "2023-09-26" @default.
- W2602578082 title "Generation of isolated attosecond pulses with enhancement cavities—a theoretical study" @default.
- W2602578082 cites W1576639143 @default.
- W2602578082 cites W1656896224 @default.
- W2602578082 cites W1966277812 @default.
- W2602578082 cites W1966382840 @default.
- W2602578082 cites W1969610239 @default.
- W2602578082 cites W1974022137 @default.
- W2602578082 cites W1975170238 @default.
- W2602578082 cites W1982970026 @default.
- W2602578082 cites W1988715417 @default.
- W2602578082 cites W1989744077 @default.
- W2602578082 cites W1991863400 @default.
- W2602578082 cites W1992197995 @default.
- W2602578082 cites W1994637158 @default.
- W2602578082 cites W2002831251 @default.
- W2602578082 cites W2011516454 @default.
- W2602578082 cites W2012303376 @default.
- W2602578082 cites W2017956025 @default.
- W2602578082 cites W2018076613 @default.
- W2602578082 cites W2018709779 @default.
- W2602578082 cites W2018998563 @default.
- W2602578082 cites W2020544230 @default.
- W2602578082 cites W2027394216 @default.
- W2602578082 cites W2029629871 @default.
- W2602578082 cites W2030746259 @default.
- W2602578082 cites W2032137734 @default.
- W2602578082 cites W2034981013 @default.
- W2602578082 cites W2043747465 @default.
- W2602578082 cites W2046886689 @default.
- W2602578082 cites W2047736200 @default.
- W2602578082 cites W2047993295 @default.
- W2602578082 cites W2051924769 @default.
- W2602578082 cites W2056559042 @default.
- W2602578082 cites W2061382044 @default.
- W2602578082 cites W2070931774 @default.
- W2602578082 cites W2072756032 @default.
- W2602578082 cites W2085215130 @default.
- W2602578082 cites W2085539122 @default.
- W2602578082 cites W2087166497 @default.
- W2602578082 cites W2089723043 @default.
- W2602578082 cites W2089731120 @default.
- W2602578082 cites W2093806717 @default.
- W2602578082 cites W2151479802 @default.
- W2602578082 cites W2155235206 @default.
- W2602578082 cites W2205458336 @default.
- W2602578082 cites W2211199773 @default.
- W2602578082 cites W2214597434 @default.
- W2602578082 cites W2244596858 @default.
- W2602578082 cites W2260626162 @default.
- W2602578082 cites W2322120296 @default.
- W2602578082 cites W2329540133 @default.
- W2602578082 cites W2329899868 @default.
- W2602578082 cites W2331108213 @default.
- W2602578082 cites W2341175333 @default.
- W2602578082 cites W2512782088 @default.
- W2602578082 cites W2565724678 @default.
- W2602578082 cites W2567619249 @default.
- W2602578082 cites W2569184333 @default.
- W2602578082 cites W3035586198 @default.
- W2602578082 cites W3105445420 @default.
- W2602578082 cites W4211101250 @default.
- W2602578082 cites W4245770866 @default.
- W2602578082 cites W4252240102 @default.
- W2602578082 cites W606068609 @default.
- W2602578082 cites W778553577 @default.
- W2602578082 doi "https://doi.org/10.1088/1367-2630/aa6315" @default.
- W2602578082 hasPublicationYear "2017" @default.
- W2602578082 type Work @default.
- W2602578082 sameAs 2602578082 @default.
- W2602578082 citedByCount "15" @default.
- W2602578082 countsByYear W26025780822018 @default.
- W2602578082 countsByYear W26025780822019 @default.
- W2602578082 countsByYear W26025780822020 @default.
- W2602578082 countsByYear W26025780822021 @default.
- W2602578082 countsByYear W26025780822022 @default.
- W2602578082 crossrefType "journal-article" @default.
- W2602578082 hasAuthorship W2602578082A5031597891 @default.
- W2602578082 hasAuthorship W2602578082A5068088238 @default.
- W2602578082 hasAuthorship W2602578082A5084605608 @default.
- W2602578082 hasBestOaLocation W26025780821 @default.
- W2602578082 hasConcept C11413529 @default.
- W2602578082 hasConcept C120665830 @default.
- W2602578082 hasConcept C121332964 @default.
- W2602578082 hasConcept C147120987 @default.
- W2602578082 hasConcept C184779094 @default.
- W2602578082 hasConcept C41008148 @default.
- W2602578082 hasConcept C520434653 @default.
- W2602578082 hasConcept C62520636 @default.
- W2602578082 hasConcept C64672749 @default.
- W2602578082 hasConceptScore W2602578082C11413529 @default.
- W2602578082 hasConceptScore W2602578082C120665830 @default.