Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602660849> ?p ?o ?g. }
- W2602660849 abstract "Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe3+. The water molecules capping surface Fe3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe3+, those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism.Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH2 distances in the DFT calculations it was proposed that the surface Fe3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe3+ is coordinated with only 5 neighbors." @default.
- W2602660849 created "2017-04-07" @default.
- W2602660849 creator A5023443683 @default.
- W2602660849 creator A5040558103 @default.
- W2602660849 creator A5056598051 @default.
- W2602660849 date "2017-03-31" @default.
- W2602660849 modified "2023-10-14" @default.
- W2602660849 title "Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations" @default.
- W2602660849 cites W1499004707 @default.
- W2602660849 cites W1606899393 @default.
- W2602660849 cites W1762528758 @default.
- W2602660849 cites W1763560786 @default.
- W2602660849 cites W1880489027 @default.
- W2602660849 cites W1965092590 @default.
- W2602660849 cites W1966158621 @default.
- W2602660849 cites W1972088892 @default.
- W2602660849 cites W1979621561 @default.
- W2602660849 cites W1980327191 @default.
- W2602660849 cites W1980969317 @default.
- W2602660849 cites W1981368803 @default.
- W2602660849 cites W1986564746 @default.
- W2602660849 cites W1988447684 @default.
- W2602660849 cites W1988964962 @default.
- W2602660849 cites W1989992912 @default.
- W2602660849 cites W1990407093 @default.
- W2602660849 cites W1990655794 @default.
- W2602660849 cites W1991794210 @default.
- W2602660849 cites W1994949504 @default.
- W2602660849 cites W2002398481 @default.
- W2602660849 cites W2007016642 @default.
- W2602660849 cites W2008423326 @default.
- W2602660849 cites W2015145621 @default.
- W2602660849 cites W2017100183 @default.
- W2602660849 cites W2017196167 @default.
- W2602660849 cites W2027530487 @default.
- W2602660849 cites W2030085833 @default.
- W2602660849 cites W2033665011 @default.
- W2602660849 cites W2036122636 @default.
- W2602660849 cites W2039970342 @default.
- W2602660849 cites W2045596260 @default.
- W2602660849 cites W2045945684 @default.
- W2602660849 cites W2046001409 @default.
- W2602660849 cites W2051892521 @default.
- W2602660849 cites W2054704030 @default.
- W2602660849 cites W2059270907 @default.
- W2602660849 cites W2063334919 @default.
- W2602660849 cites W2065012425 @default.
- W2602660849 cites W2066817564 @default.
- W2602660849 cites W2074019256 @default.
- W2602660849 cites W2074729445 @default.
- W2602660849 cites W2076858582 @default.
- W2602660849 cites W2078772463 @default.
- W2602660849 cites W2084574944 @default.
- W2602660849 cites W2086117071 @default.
- W2602660849 cites W2087927251 @default.
- W2602660849 cites W2089366753 @default.
- W2602660849 cites W2092157292 @default.
- W2602660849 cites W2098141096 @default.
- W2602660849 cites W2098161603 @default.
- W2602660849 cites W2129705933 @default.
- W2602660849 cites W2133266834 @default.
- W2602660849 cites W2133476129 @default.
- W2602660849 cites W2134307060 @default.
- W2602660849 cites W2138038287 @default.
- W2602660849 cites W2150266958 @default.
- W2602660849 cites W2152152303 @default.
- W2602660849 cites W2152902542 @default.
- W2602660849 cites W2165675465 @default.
- W2602660849 cites W2170462036 @default.
- W2602660849 cites W2312201898 @default.
- W2602660849 cites W2328797290 @default.
- W2602660849 cites W2521390000 @default.
- W2602660849 cites W3098985721 @default.
- W2602660849 doi "https://doi.org/10.1186/s12932-017-0040-5" @default.
- W2602660849 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5374091" @default.
- W2602660849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29086806" @default.
- W2602660849 hasPublicationYear "2017" @default.
- W2602660849 type Work @default.
- W2602660849 sameAs 2602660849 @default.
- W2602660849 citedByCount "21" @default.
- W2602660849 countsByYear W26026608492017 @default.
- W2602660849 countsByYear W26026608492018 @default.
- W2602660849 countsByYear W26026608492019 @default.
- W2602660849 countsByYear W26026608492020 @default.
- W2602660849 countsByYear W26026608492021 @default.
- W2602660849 countsByYear W26026608492022 @default.
- W2602660849 countsByYear W26026608492023 @default.
- W2602660849 crossrefType "journal-article" @default.
- W2602660849 hasAuthorship W2602660849A5023443683 @default.
- W2602660849 hasAuthorship W2602660849A5040558103 @default.
- W2602660849 hasAuthorship W2602660849A5056598051 @default.
- W2602660849 hasBestOaLocation W26026608491 @default.
- W2602660849 hasConcept C112887158 @default.
- W2602660849 hasConcept C147597530 @default.
- W2602660849 hasConcept C147789679 @default.
- W2602660849 hasConcept C148093993 @default.
- W2602660849 hasConcept C150394285 @default.
- W2602660849 hasConcept C152365726 @default.
- W2602660849 hasConcept C159467904 @default.
- W2602660849 hasConcept C168900304 @default.