Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602786340> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2602786340 endingPage "31" @default.
- W2602786340 startingPage "25" @default.
- W2602786340 abstract "A combination of Graph cut technique efficiently used to solve a wide variety of low-level computer vision problems, such as image smoothing and k-means clustering with multi threshold for medical image segmentation is presented. The main objective of medical image segmentation is to extract the anatomic structures and its characteristics with respect to some input features. There exist various methodologies for medical image segmentation but struggles with missing features due to the noise presence in the medical images. In propose a new technique to increase the resolution of the medical images to identify the features and edges of the medical images. The medical image is preprocessed to reduce the noise, and then multi level histogram is generated in the first phase of the process. In the second stage, with the initial segmentation obtained with gray level contours, and generate the histogram then the construct the pixel adjacency graph in which each nodes represents the set of pixels of the image and edges links the neighbor pixels. A calculate the similarity of neighboring pixels; based on the distance value, cluster the similar pixels to a class. In use k-means clustering to group similar pixels and used Euclidean distance measure to calculate the similarity between pixels. The proposed method is carried out iteratively until the user gets satisfied. The method will be carried out repeatedly with the user defined threshold value. The threshold is used to group pixels with in the distance. With the proposed technique the features are maintained and the resolution of the image enhanced. The time complexity of the process is reduced. Index Terms:K-means clustering, User Interacted Medical image Segmentation, Threshold based segmentation, Weight Map, histogram, edge detection." @default.
- W2602786340 created "2017-04-07" @default.
- W2602786340 creator A5072282691 @default.
- W2602786340 creator A5074476437 @default.
- W2602786340 date "2013-10-08" @default.
- W2602786340 modified "2023-09-25" @default.
- W2602786340 title "Graph Based User Interacted Medical Image Segmentation with Multi Threshold Using K-means Clustering" @default.
- W2602786340 hasPublicationYear "2013" @default.
- W2602786340 type Work @default.
- W2602786340 sameAs 2602786340 @default.
- W2602786340 citedByCount "0" @default.
- W2602786340 crossrefType "journal-article" @default.
- W2602786340 hasAuthorship W2602786340A5072282691 @default.
- W2602786340 hasAuthorship W2602786340A5074476437 @default.
- W2602786340 hasConcept C115961682 @default.
- W2602786340 hasConcept C124504099 @default.
- W2602786340 hasConcept C153180895 @default.
- W2602786340 hasConcept C154945302 @default.
- W2602786340 hasConcept C160633673 @default.
- W2602786340 hasConcept C206824153 @default.
- W2602786340 hasConcept C25694479 @default.
- W2602786340 hasConcept C31972630 @default.
- W2602786340 hasConcept C33923547 @default.
- W2602786340 hasConcept C41008148 @default.
- W2602786340 hasConcept C53533937 @default.
- W2602786340 hasConcept C65885262 @default.
- W2602786340 hasConcept C73555534 @default.
- W2602786340 hasConcept C89600930 @default.
- W2602786340 hasConceptScore W2602786340C115961682 @default.
- W2602786340 hasConceptScore W2602786340C124504099 @default.
- W2602786340 hasConceptScore W2602786340C153180895 @default.
- W2602786340 hasConceptScore W2602786340C154945302 @default.
- W2602786340 hasConceptScore W2602786340C160633673 @default.
- W2602786340 hasConceptScore W2602786340C206824153 @default.
- W2602786340 hasConceptScore W2602786340C25694479 @default.
- W2602786340 hasConceptScore W2602786340C31972630 @default.
- W2602786340 hasConceptScore W2602786340C33923547 @default.
- W2602786340 hasConceptScore W2602786340C41008148 @default.
- W2602786340 hasConceptScore W2602786340C53533937 @default.
- W2602786340 hasConceptScore W2602786340C65885262 @default.
- W2602786340 hasConceptScore W2602786340C73555534 @default.
- W2602786340 hasConceptScore W2602786340C89600930 @default.
- W2602786340 hasIssue "1" @default.
- W2602786340 hasLocation W26027863401 @default.
- W2602786340 hasOpenAccess W2602786340 @default.
- W2602786340 hasPrimaryLocation W26027863401 @default.
- W2602786340 hasRelatedWork W1496378633 @default.
- W2602786340 hasRelatedWork W1524874394 @default.
- W2602786340 hasRelatedWork W196823288 @default.
- W2602786340 hasRelatedWork W2039802827 @default.
- W2602786340 hasRelatedWork W2052327124 @default.
- W2602786340 hasRelatedWork W2101744728 @default.
- W2602786340 hasRelatedWork W2155985447 @default.
- W2602786340 hasRelatedWork W2160420358 @default.
- W2602786340 hasRelatedWork W2161088307 @default.
- W2602786340 hasRelatedWork W2358587562 @default.
- W2602786340 hasRelatedWork W2373226867 @default.
- W2602786340 hasRelatedWork W2386816815 @default.
- W2602786340 hasRelatedWork W2520543172 @default.
- W2602786340 hasRelatedWork W3176805294 @default.
- W2602786340 hasRelatedWork W2818102451 @default.
- W2602786340 hasRelatedWork W2822539199 @default.
- W2602786340 hasRelatedWork W2825844125 @default.
- W2602786340 hasRelatedWork W2868794917 @default.
- W2602786340 hasRelatedWork W3002501780 @default.
- W2602786340 hasRelatedWork W3154315117 @default.
- W2602786340 hasVolume "6" @default.
- W2602786340 isParatext "false" @default.
- W2602786340 isRetracted "false" @default.
- W2602786340 magId "2602786340" @default.
- W2602786340 workType "article" @default.