Matches in SemOpenAlex for { <https://semopenalex.org/work/W2602890850> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2602890850 abstract "Many decisions in our everyday life such as decisions in an economic or social context are made under uncertainty. In uncertain situations people often have to make decisions under risk, where the probability of specific outcomes is known. Sometimes they even face ambiguous situations, where the outcome is not clearly predictable. Furthermore decisions under uncertainty in economic contexts, i.e. buying or investment decisions are framed by different determinants, i.e. perceived risk or anticipated risk, personality or situational factors. These determinants suggest that the role of uncertainty is particularly important for decisions in online settings. One major focus of information systems (IS) research, are decision-making processes and consumer behavior in online settings, where the importance of investigating risk and uncertainty is enhanced (i.e. Pavlou et al. 2007). To understand consumer behavior in online settings, recent studies show for example the necessity to analyze specific decisions under uncertainty (Dimoka et al., 2012) or to investigate the interplay of risk and trust (Gefen and Pavlou, 2010). In this context a newly emerged scientific field – NeuroIS integrates neuroscientific methods and theories in IS research to better understand how the brain interacts with an IS relevant context (Riedl et al. 2010). Experimental studies within this field currently focus on trust-related processes by integrating decision-making under uncertainty as external factor. In a next step, the analysis of uncertain and – more specifically – the analysis of risky decisions as well as the integration of results and theories from social neuroscience regarding uncertainty and risk processing networks could be of importance for (Neuro)IS. Furthermore the investigation of the brain as a complex network structure is now spotlighted by IS research by the means of integrating advanced neuroscientific methods in NeuroIS research (Hubert et al., 2012). Therefore we suggest a conceptual model of analyzing decisions under uncertainty and risk in online settings by using an advanced neuroscientific method of multi-level mediation. This methodological approach takes into account the different brain networks that are associated with the processing of uncertainty and risk (see figure 1). Figure 1. Conceptual Model First, starting point of the multi-level mediation is the relevant and evident causal dependence of various levels of uncertainty as well as risk (independent variable) on various outcomes in online settings (dependent variable), i.e. bidding and purchase behavior or investment behavior. Second, studies of social neuroscience provide evidence of the existence of networks of brain regions for risk and uncertainty processing which determine decision making (multilevel-mediator), i.e. in economic exchange or cooperation games (Mohr et. al, 2010). Those results could build a powerful theoretical basis that may be transferred to IS-related contexts. Third, the possibility of neuroscientific multilevelmediation analysis (i.e. described by Wager et al. 2008) allows us to integrate results and theories regarding risk or uncertainty processing networks into existing models and theories of observed behavior (see e.g., Berkman and Falk 2013) to broaden the understanding of decision-making under uncertainty in online settings." @default.
- W2602890850 created "2017-04-07" @default.
- W2602890850 creator A5002852568 @default.
- W2602890850 creator A5076903347 @default.
- W2602890850 creator A5085022149 @default.
- W2602890850 date "2013-06-01" @default.
- W2602890850 modified "2023-09-24" @default.
- W2602890850 title "Neural Evidence of Uncertainty and Risk Processing Networks in Information System Research: A Multilevel-Mediation Approach" @default.
- W2602890850 hasPublicationYear "2013" @default.
- W2602890850 type Work @default.
- W2602890850 sameAs 2602890850 @default.
- W2602890850 citedByCount "0" @default.
- W2602890850 crossrefType "journal-article" @default.
- W2602890850 hasAuthorship W2602890850A5002852568 @default.
- W2602890850 hasAuthorship W2602890850A5076903347 @default.
- W2602890850 hasAuthorship W2602890850A5085022149 @default.
- W2602890850 hasConcept C109574028 @default.
- W2602890850 hasConcept C112930515 @default.
- W2602890850 hasConcept C144024400 @default.
- W2602890850 hasConcept C144133560 @default.
- W2602890850 hasConcept C151730666 @default.
- W2602890850 hasConcept C15744967 @default.
- W2602890850 hasConcept C162324750 @default.
- W2602890850 hasConcept C175444787 @default.
- W2602890850 hasConcept C179420905 @default.
- W2602890850 hasConcept C2778865806 @default.
- W2602890850 hasConcept C2779343474 @default.
- W2602890850 hasConcept C36289849 @default.
- W2602890850 hasConcept C77805123 @default.
- W2602890850 hasConcept C86803240 @default.
- W2602890850 hasConcept C9114305 @default.
- W2602890850 hasConceptScore W2602890850C109574028 @default.
- W2602890850 hasConceptScore W2602890850C112930515 @default.
- W2602890850 hasConceptScore W2602890850C144024400 @default.
- W2602890850 hasConceptScore W2602890850C144133560 @default.
- W2602890850 hasConceptScore W2602890850C151730666 @default.
- W2602890850 hasConceptScore W2602890850C15744967 @default.
- W2602890850 hasConceptScore W2602890850C162324750 @default.
- W2602890850 hasConceptScore W2602890850C175444787 @default.
- W2602890850 hasConceptScore W2602890850C179420905 @default.
- W2602890850 hasConceptScore W2602890850C2778865806 @default.
- W2602890850 hasConceptScore W2602890850C2779343474 @default.
- W2602890850 hasConceptScore W2602890850C36289849 @default.
- W2602890850 hasConceptScore W2602890850C77805123 @default.
- W2602890850 hasConceptScore W2602890850C86803240 @default.
- W2602890850 hasConceptScore W2602890850C9114305 @default.
- W2602890850 hasLocation W26028908501 @default.
- W2602890850 hasOpenAccess W2602890850 @default.
- W2602890850 hasPrimaryLocation W26028908501 @default.
- W2602890850 hasRelatedWork W106002676 @default.
- W2602890850 hasRelatedWork W136937263 @default.
- W2602890850 hasRelatedWork W1758228846 @default.
- W2602890850 hasRelatedWork W2002859359 @default.
- W2602890850 hasRelatedWork W2023332909 @default.
- W2602890850 hasRelatedWork W206432991 @default.
- W2602890850 hasRelatedWork W2126171708 @default.
- W2602890850 hasRelatedWork W2136188204 @default.
- W2602890850 hasRelatedWork W2276192869 @default.
- W2602890850 hasRelatedWork W2545546008 @default.
- W2602890850 hasRelatedWork W2744503354 @default.
- W2602890850 hasRelatedWork W2767297077 @default.
- W2602890850 hasRelatedWork W2810568596 @default.
- W2602890850 hasRelatedWork W2883099968 @default.
- W2602890850 hasRelatedWork W2897259746 @default.
- W2602890850 hasRelatedWork W2899603939 @default.
- W2602890850 hasRelatedWork W3097830714 @default.
- W2602890850 hasRelatedWork W3115131487 @default.
- W2602890850 hasRelatedWork W3171028779 @default.
- W2602890850 hasRelatedWork W2170874142 @default.
- W2602890850 isParatext "false" @default.
- W2602890850 isRetracted "false" @default.
- W2602890850 magId "2602890850" @default.
- W2602890850 workType "article" @default.