Matches in SemOpenAlex for { <https://semopenalex.org/work/W2603045688> ?p ?o ?g. }
- W2603045688 abstract "The (generalised) Mellin transforms of certain Chebyshev and Gegenbauer functions based upon the Chebyshev and Gegenbauer polynomials, have polynomial factors $p_n(s)$, whose zeros lie all on the `critical line' $Re,s=1/2$ or on the real axis (called critical polynomials). The transforms are identified in terms of combinatorial sums related to H. W. Gould's S:4/3, S:4/2 and S:3/1 binomial coefficient forms. Their `critical polynomial' factors are then identified as variants of the S:4/1 form, and more compactly in terms of certain $_3F_2(1)$ hypergeometric functions. Furthermore, we extend these results to a $1$-parameter family of polynomials with zeros only on the critical line. These polynomials possess the functional equation $p_n(s;beta)=pm p_n(1-s;beta)$, similar to that for the Riemann xi function. It is shown that via manipulation of the binomial factors, these `critical polynomials' can be simplified to an S:3/2 form, which after normalisation yields the rational function $q_n(s).$ The denominator of the rational form has singularities on the negative real axis, and so $q_n(s)$ has the same `critical zeros' as the `critical polynomial' $p_n(s)$. Moreover as $srightarrow infty$ along the positive real axis, $q_n(s)rightarrow 1$ from below, mimicking $1/zeta(s)$ on the positive real line. In the case of the Chebyshev parameters we deduce the simpler S:2/1 binomial form, and with $mathcal{C}_n$ the $n$th Catalan number, $s$ an integer, we show that polynomials $4mathcal{C}_{n-1}p_{2n}(s)$ and $mathcal{C}_{n}p_{2n+1}(s)$ yield integers with only odd prime factors. The results touch on analytic number theory, special function theory, and combinatorics." @default.
- W2603045688 created "2017-04-07" @default.
- W2603045688 creator A5013665725 @default.
- W2603045688 creator A5044407628 @default.
- W2603045688 date "2017-03-27" @default.
- W2603045688 modified "2023-09-27" @default.
- W2603045688 title "Binomial Polynomials mimicking Riemann's Zeta Function" @default.
- W2603045688 cites W1486712340 @default.
- W2603045688 cites W1806291414 @default.
- W2603045688 cites W1807391107 @default.
- W2603045688 cites W1966268321 @default.
- W2603045688 cites W1982457411 @default.
- W2603045688 cites W1990480308 @default.
- W2603045688 cites W2007439424 @default.
- W2603045688 cites W2023257827 @default.
- W2603045688 cites W2037423770 @default.
- W2603045688 cites W2045693183 @default.
- W2603045688 cites W2048870720 @default.
- W2603045688 cites W2059998776 @default.
- W2603045688 cites W2064727561 @default.
- W2603045688 cites W2082225085 @default.
- W2603045688 cites W2082637057 @default.
- W2603045688 cites W2118302283 @default.
- W2603045688 cites W2120062331 @default.
- W2603045688 cites W2155593484 @default.
- W2603045688 cites W2964151758 @default.
- W2603045688 cites W2982843188 @default.
- W2603045688 cites W3038165843 @default.
- W2603045688 cites W604181985 @default.
- W2603045688 hasPublicationYear "2017" @default.
- W2603045688 type Work @default.
- W2603045688 sameAs 2603045688 @default.
- W2603045688 citedByCount "0" @default.
- W2603045688 crossrefType "posted-content" @default.
- W2603045688 hasAuthorship W2603045688A5013665725 @default.
- W2603045688 hasAuthorship W2603045688A5044407628 @default.
- W2603045688 hasConcept C105795698 @default.
- W2603045688 hasConcept C10628310 @default.
- W2603045688 hasConcept C114614502 @default.
- W2603045688 hasConcept C121332964 @default.
- W2603045688 hasConcept C129785596 @default.
- W2603045688 hasConcept C134306372 @default.
- W2603045688 hasConcept C176671685 @default.
- W2603045688 hasConcept C180099792 @default.
- W2603045688 hasConcept C197320386 @default.
- W2603045688 hasConcept C199479865 @default.
- W2603045688 hasConcept C202444582 @default.
- W2603045688 hasConcept C2776605787 @default.
- W2603045688 hasConcept C2781315470 @default.
- W2603045688 hasConcept C33923547 @default.
- W2603045688 hasConcept C34718186 @default.
- W2603045688 hasConcept C35235930 @default.
- W2603045688 hasConcept C48490523 @default.
- W2603045688 hasConcept C75190567 @default.
- W2603045688 hasConcept C90119067 @default.
- W2603045688 hasConcept C97355855 @default.
- W2603045688 hasConceptScore W2603045688C105795698 @default.
- W2603045688 hasConceptScore W2603045688C10628310 @default.
- W2603045688 hasConceptScore W2603045688C114614502 @default.
- W2603045688 hasConceptScore W2603045688C121332964 @default.
- W2603045688 hasConceptScore W2603045688C129785596 @default.
- W2603045688 hasConceptScore W2603045688C134306372 @default.
- W2603045688 hasConceptScore W2603045688C176671685 @default.
- W2603045688 hasConceptScore W2603045688C180099792 @default.
- W2603045688 hasConceptScore W2603045688C197320386 @default.
- W2603045688 hasConceptScore W2603045688C199479865 @default.
- W2603045688 hasConceptScore W2603045688C202444582 @default.
- W2603045688 hasConceptScore W2603045688C2776605787 @default.
- W2603045688 hasConceptScore W2603045688C2781315470 @default.
- W2603045688 hasConceptScore W2603045688C33923547 @default.
- W2603045688 hasConceptScore W2603045688C34718186 @default.
- W2603045688 hasConceptScore W2603045688C35235930 @default.
- W2603045688 hasConceptScore W2603045688C48490523 @default.
- W2603045688 hasConceptScore W2603045688C75190567 @default.
- W2603045688 hasConceptScore W2603045688C90119067 @default.
- W2603045688 hasConceptScore W2603045688C97355855 @default.
- W2603045688 hasLocation W26030456881 @default.
- W2603045688 hasOpenAccess W2603045688 @default.
- W2603045688 hasPrimaryLocation W26030456881 @default.
- W2603045688 hasRelatedWork W1498792629 @default.
- W2603045688 hasRelatedWork W1518316152 @default.
- W2603045688 hasRelatedWork W1522715567 @default.
- W2603045688 hasRelatedWork W1981816185 @default.
- W2603045688 hasRelatedWork W2019453571 @default.
- W2603045688 hasRelatedWork W2031043777 @default.
- W2603045688 hasRelatedWork W2043035890 @default.
- W2603045688 hasRelatedWork W2053989427 @default.
- W2603045688 hasRelatedWork W2062912738 @default.
- W2603045688 hasRelatedWork W2161068921 @default.
- W2603045688 hasRelatedWork W2343711302 @default.
- W2603045688 hasRelatedWork W2614258977 @default.
- W2603045688 hasRelatedWork W2798963697 @default.
- W2603045688 hasRelatedWork W2894781088 @default.
- W2603045688 hasRelatedWork W2903969435 @default.
- W2603045688 hasRelatedWork W2908469376 @default.
- W2603045688 hasRelatedWork W2914549080 @default.
- W2603045688 hasRelatedWork W2953319093 @default.
- W2603045688 hasRelatedWork W3083746731 @default.
- W2603045688 hasRelatedWork W3120003585 @default.
- W2603045688 isParatext "false" @default.