Matches in SemOpenAlex for { <https://semopenalex.org/work/W2603433416> ?p ?o ?g. }
- W2603433416 endingPage "16" @default.
- W2603433416 startingPage "1" @default.
- W2603433416 abstract "Sparse sampling schemes can broadly be classified into two main categories: static sampling where the sampling pattern is predetermined, and dynamic sampling where each new measurement location is selected based on information obtained from previous measurements. Dynamic sampling methods are particularly appropriate for pointwise imaging methods, in which pixels are measured sequentially in arbitrary order. Examples of pointwise imaging schemes include certain implementations of atomic force microscopy, electron back scatter diffraction, and synchrotron X-ray imaging. In these pointwise imaging applications, dynamic sparse sampling methods have the potential to dramatically reduce the number of measurements required to achieve a desired level of fidelity. However, the existing dynamic sampling methods tend to be computationally expensive and are, therefore, too slow for many practical applications. In this paper, we present a framework for dynamic sampling based on machine learning techniques, which we call a supervised learning approach for dynamic sampling (SLADS). In each step of SLADS, the objective is to find the pixel that maximizes the expected reduction in distortion (ERD) given previous measurements. SLADS is fast because we use a simple regression function to compute the ERD, and it is accurate because the regression function is trained using datasets that are representative of the specific application. In addition, we introduce an approximate method to terminate dynamic sampling at a desired level of distortion. We then extend our algorithm to incorporate multiple measurements at each step, which we call groupwise SLADS. Finally, we present results on computationally generated synthetic data and experimentally collected data to demonstrate a dramatic improvement over state-of-the-art static sampling methods" @default.
- W2603433416 created "2017-04-07" @default.
- W2603433416 creator A5020010248 @default.
- W2603433416 creator A5024070899 @default.
- W2603433416 creator A5043714755 @default.
- W2603433416 creator A5056657991 @default.
- W2603433416 creator A5058366849 @default.
- W2603433416 creator A5068927047 @default.
- W2603433416 date "2018-03-01" @default.
- W2603433416 modified "2023-10-16" @default.
- W2603433416 title "A Framework for Dynamic Image Sampling Based on Supervised Learning" @default.
- W2603433416 cites W1506342804 @default.
- W2603433416 cites W1549438340 @default.
- W2603433416 cites W1925354503 @default.
- W2603433416 cites W1964357740 @default.
- W2603433416 cites W2013770351 @default.
- W2603433416 cites W2019143734 @default.
- W2603433416 cites W2044279302 @default.
- W2603433416 cites W2053891531 @default.
- W2603433416 cites W2056370875 @default.
- W2603433416 cites W2061926706 @default.
- W2603433416 cites W2063017729 @default.
- W2603433416 cites W2071284784 @default.
- W2603433416 cites W2087326866 @default.
- W2603433416 cites W2097073572 @default.
- W2603433416 cites W2101548617 @default.
- W2603433416 cites W2110690917 @default.
- W2603433416 cites W2116305502 @default.
- W2603433416 cites W2116523778 @default.
- W2603433416 cites W2117274978 @default.
- W2603433416 cites W2122546849 @default.
- W2603433416 cites W2122891730 @default.
- W2603433416 cites W2123090765 @default.
- W2603433416 cites W2125289895 @default.
- W2603433416 cites W2134452374 @default.
- W2603433416 cites W2138309709 @default.
- W2603433416 cites W2147169375 @default.
- W2603433416 cites W2147361252 @default.
- W2603433416 cites W2148450400 @default.
- W2603433416 cites W2152014464 @default.
- W2603433416 cites W2160547390 @default.
- W2603433416 cites W2163397997 @default.
- W2603433416 cites W2168399082 @default.
- W2603433416 cites W2486196027 @default.
- W2603433416 cites W2558155811 @default.
- W2603433416 cites W2560821303 @default.
- W2603433416 cites W2571005879 @default.
- W2603433416 cites W2575758291 @default.
- W2603433416 cites W2618530766 @default.
- W2603433416 cites W2743937956 @default.
- W2603433416 cites W2963578649 @default.
- W2603433416 cites W3100302110 @default.
- W2603433416 cites W3105425607 @default.
- W2603433416 cites W4250459844 @default.
- W2603433416 doi "https://doi.org/10.1109/tci.2017.2777482" @default.
- W2603433416 hasPublicationYear "2018" @default.
- W2603433416 type Work @default.
- W2603433416 sameAs 2603433416 @default.
- W2603433416 citedByCount "27" @default.
- W2603433416 countsByYear W26034334162017 @default.
- W2603433416 countsByYear W26034334162018 @default.
- W2603433416 countsByYear W26034334162019 @default.
- W2603433416 countsByYear W26034334162020 @default.
- W2603433416 countsByYear W26034334162021 @default.
- W2603433416 countsByYear W26034334162022 @default.
- W2603433416 countsByYear W26034334162023 @default.
- W2603433416 crossrefType "journal-article" @default.
- W2603433416 hasAuthorship W2603433416A5020010248 @default.
- W2603433416 hasAuthorship W2603433416A5024070899 @default.
- W2603433416 hasAuthorship W2603433416A5043714755 @default.
- W2603433416 hasAuthorship W2603433416A5056657991 @default.
- W2603433416 hasAuthorship W2603433416A5058366849 @default.
- W2603433416 hasAuthorship W2603433416A5068927047 @default.
- W2603433416 hasConcept C106131492 @default.
- W2603433416 hasConcept C11413529 @default.
- W2603433416 hasConcept C126780896 @default.
- W2603433416 hasConcept C134306372 @default.
- W2603433416 hasConcept C140779682 @default.
- W2603433416 hasConcept C154945302 @default.
- W2603433416 hasConcept C160633673 @default.
- W2603433416 hasConcept C194257627 @default.
- W2603433416 hasConcept C197323446 @default.
- W2603433416 hasConcept C2776257435 @default.
- W2603433416 hasConcept C2777984123 @default.
- W2603433416 hasConcept C31258907 @default.
- W2603433416 hasConcept C31972630 @default.
- W2603433416 hasConcept C33923547 @default.
- W2603433416 hasConcept C41008148 @default.
- W2603433416 hasConceptScore W2603433416C106131492 @default.
- W2603433416 hasConceptScore W2603433416C11413529 @default.
- W2603433416 hasConceptScore W2603433416C126780896 @default.
- W2603433416 hasConceptScore W2603433416C134306372 @default.
- W2603433416 hasConceptScore W2603433416C140779682 @default.
- W2603433416 hasConceptScore W2603433416C154945302 @default.
- W2603433416 hasConceptScore W2603433416C160633673 @default.
- W2603433416 hasConceptScore W2603433416C194257627 @default.
- W2603433416 hasConceptScore W2603433416C197323446 @default.
- W2603433416 hasConceptScore W2603433416C2776257435 @default.