Matches in SemOpenAlex for { <https://semopenalex.org/work/W2603624290> ?p ?o ?g. }
- W2603624290 endingPage "353" @default.
- W2603624290 startingPage "339" @default.
- W2603624290 abstract "Overlapping Community Detection from a real network is unsupervised, and it is hard to know the exact community number or quantized strength of every node related to each community. Using Non-negative Matrix Factorization (NMF) for Community Detection, we can find two non-negative matrices from whole network adjacent matrix, and the product of two matrices approximates the original matrix well. With Bayesian explanation in factorizing process, we can not only catch most appropriate count of communities in a large network with Shrinkage method, but also verify good threshold how a node should be assigned to a community in fuzzy situation. We apply our approach in some real networks and a synthetic network with benchmark. Experimental results for overlapping community detection show that our method is effective to find the communities number and overlapping degree, and achieve better performance than other existing overlapping community detection methods." @default.
- W2603624290 created "2017-04-07" @default.
- W2603624290 creator A5030781794 @default.
- W2603624290 creator A5060548941 @default.
- W2603624290 creator A5072458484 @default.
- W2603624290 date "2017-01-01" @default.
- W2603624290 modified "2023-09-23" @default.
- W2603624290 title "Adaptive Overlapping Community Detection with Bayesian NonNegative Matrix Factorization" @default.
- W2603624290 cites W1774824195 @default.
- W2603624290 cites W1902027874 @default.
- W2603624290 cites W1967880836 @default.
- W2603624290 cites W1970301364 @default.
- W2603624290 cites W1971421925 @default.
- W2603624290 cites W1980928832 @default.
- W2603624290 cites W1983753875 @default.
- W2603624290 cites W1987885244 @default.
- W2603624290 cites W1991408655 @default.
- W2603624290 cites W2025572017 @default.
- W2603624290 cites W2031696998 @default.
- W2603624290 cites W2050601254 @default.
- W2603624290 cites W2057793636 @default.
- W2603624290 cites W2064996876 @default.
- W2603624290 cites W2066090568 @default.
- W2603624290 cites W2081082212 @default.
- W2603624290 cites W2084283398 @default.
- W2603624290 cites W2092124750 @default.
- W2603624290 cites W2110096996 @default.
- W2603624290 cites W2110620844 @default.
- W2603624290 cites W2114508388 @default.
- W2603624290 cites W2115632271 @default.
- W2603624290 cites W2116542188 @default.
- W2603624290 cites W2118608338 @default.
- W2603624290 cites W2124644365 @default.
- W2603624290 cites W2139694940 @default.
- W2603624290 cites W2144351558 @default.
- W2603624290 cites W2148781711 @default.
- W2603624290 cites W2155167324 @default.
- W2603624290 cites W2160047866 @default.
- W2603624290 cites W2164928285 @default.
- W2603624290 cites W2165533101 @default.
- W2603624290 cites W2249577208 @default.
- W2603624290 cites W2288457463 @default.
- W2603624290 cites W2300371114 @default.
- W2603624290 cites W2395777716 @default.
- W2603624290 cites W2491633587 @default.
- W2603624290 cites W2524865061 @default.
- W2603624290 cites W2963981262 @default.
- W2603624290 cites W2964273740 @default.
- W2603624290 cites W3103786587 @default.
- W2603624290 cites W3103973800 @default.
- W2603624290 cites W3105411815 @default.
- W2603624290 cites W3125164951 @default.
- W2603624290 cites W362613609 @default.
- W2603624290 cites W4292081303 @default.
- W2603624290 doi "https://doi.org/10.1007/978-3-319-55699-4_21" @default.
- W2603624290 hasPublicationYear "2017" @default.
- W2603624290 type Work @default.
- W2603624290 sameAs 2603624290 @default.
- W2603624290 citedByCount "8" @default.
- W2603624290 countsByYear W26036242902018 @default.
- W2603624290 countsByYear W26036242902019 @default.
- W2603624290 countsByYear W26036242902020 @default.
- W2603624290 countsByYear W26036242902022 @default.
- W2603624290 countsByYear W26036242902023 @default.
- W2603624290 crossrefType "book-chapter" @default.
- W2603624290 hasAuthorship W2603624290A5030781794 @default.
- W2603624290 hasAuthorship W2603624290A5060548941 @default.
- W2603624290 hasAuthorship W2603624290A5072458484 @default.
- W2603624290 hasConcept C105795698 @default.
- W2603624290 hasConcept C106487976 @default.
- W2603624290 hasConcept C107673813 @default.
- W2603624290 hasConcept C11413529 @default.
- W2603624290 hasConcept C121332964 @default.
- W2603624290 hasConcept C124101348 @default.
- W2603624290 hasConcept C127413603 @default.
- W2603624290 hasConcept C13280743 @default.
- W2603624290 hasConcept C133079900 @default.
- W2603624290 hasConcept C152671427 @default.
- W2603624290 hasConcept C153180895 @default.
- W2603624290 hasConcept C154945302 @default.
- W2603624290 hasConcept C158693339 @default.
- W2603624290 hasConcept C159985019 @default.
- W2603624290 hasConcept C185798385 @default.
- W2603624290 hasConcept C187834632 @default.
- W2603624290 hasConcept C192562407 @default.
- W2603624290 hasConcept C205649164 @default.
- W2603624290 hasConcept C33923547 @default.
- W2603624290 hasConcept C41008148 @default.
- W2603624290 hasConcept C42355184 @default.
- W2603624290 hasConcept C58166 @default.
- W2603624290 hasConcept C62520636 @default.
- W2603624290 hasConcept C62611344 @default.
- W2603624290 hasConcept C66938386 @default.
- W2603624290 hasConceptScore W2603624290C105795698 @default.
- W2603624290 hasConceptScore W2603624290C106487976 @default.
- W2603624290 hasConceptScore W2603624290C107673813 @default.
- W2603624290 hasConceptScore W2603624290C11413529 @default.
- W2603624290 hasConceptScore W2603624290C121332964 @default.