Matches in SemOpenAlex for { <https://semopenalex.org/work/W2603670574> ?p ?o ?g. }
- W2603670574 endingPage "1559" @default.
- W2603670574 startingPage "1546" @default.
- W2603670574 abstract "The aim of this study was to assess artificial intelligence methods (adaptive neuro-fuzzy inference systems and artificial neural network, ANN) for modeling and predicting energy output and greenhouse gas emissions from calf fattening farms in Abyek and Alborz cities of Iran. The modeling was done based on the amount of energy input. From the total energy input of 24,003 (MJ calf−1), feed and fossil fuels have the most significant share. The analysis of greenhouse gas emissions showed that 1174 kg of carbon dioxide equivalent per head of calf was released for the fattening period of 6–12 months. The best model of ANN had 6-16-2 structure. The best adaptive neuro-fuzzy inference systems model was designed using four adaptive neuro-fuzzy inference systems sub-networks, which were developed at two stages. Comparison between the models showed that, due to employing fuzzy rules, the adaptive neuro-fuzzy inference systems models could model energy output and greenhouse gas emissions more accurately than the ANN model. Regression coefficient, root means square error, and mean absolute percentage error for the ANN model were 0.721, 0.055, and 0.9 for energy output, while 0.733, 0.048, and 2.49 for greenhouse gas emissions. These values for the best topology adaptive neuro-fuzzy inference systems were 0.999, 0.006, and 0.098 for energy output, while 0.996, 0.005, and 0.362 for greenhouse gas emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 1546–1559, 2017" @default.
- W2603670574 created "2017-04-07" @default.
- W2603670574 creator A5023831187 @default.
- W2603670574 creator A5056117468 @default.
- W2603670574 creator A5086550972 @default.
- W2603670574 date "2017-03-23" @default.
- W2603670574 modified "2023-10-04" @default.
- W2603670574 title "Investigations of energy consumption and greenhouse gas emissions of fattening farms using artificial intelligence methods" @default.
- W2603670574 cites W1612028539 @default.
- W2603670574 cites W1965846962 @default.
- W2603670574 cites W1981029206 @default.
- W2603670574 cites W1981240940 @default.
- W2603670574 cites W1984479967 @default.
- W2603670574 cites W1984529875 @default.
- W2603670574 cites W1992674248 @default.
- W2603670574 cites W1996122683 @default.
- W2603670574 cites W1996773027 @default.
- W2603670574 cites W2001379895 @default.
- W2603670574 cites W2012832250 @default.
- W2603670574 cites W2017619409 @default.
- W2603670574 cites W2022223561 @default.
- W2603670574 cites W2026083729 @default.
- W2603670574 cites W2030473669 @default.
- W2603670574 cites W2032894893 @default.
- W2603670574 cites W2035192336 @default.
- W2603670574 cites W2036460213 @default.
- W2603670574 cites W2047521304 @default.
- W2603670574 cites W2051682118 @default.
- W2603670574 cites W2054215401 @default.
- W2603670574 cites W2057368589 @default.
- W2603670574 cites W2065155826 @default.
- W2603670574 cites W2065645571 @default.
- W2603670574 cites W2065753118 @default.
- W2603670574 cites W2070456503 @default.
- W2603670574 cites W2074880652 @default.
- W2603670574 cites W2083986273 @default.
- W2603670574 cites W2093521297 @default.
- W2603670574 cites W2095503193 @default.
- W2603670574 cites W2095558420 @default.
- W2603670574 cites W2097735268 @default.
- W2603670574 cites W2102449121 @default.
- W2603670574 cites W2123098628 @default.
- W2603670574 cites W2128626257 @default.
- W2603670574 cites W2171679601 @default.
- W2603670574 cites W2343104501 @default.
- W2603670574 cites W2509818319 @default.
- W2603670574 cites W2548116352 @default.
- W2603670574 cites W2554067985 @default.
- W2603670574 cites W2583599952 @default.
- W2603670574 cites W898370730 @default.
- W2603670574 doi "https://doi.org/10.1002/ep.12604" @default.
- W2603670574 hasPublicationYear "2017" @default.
- W2603670574 type Work @default.
- W2603670574 sameAs 2603670574 @default.
- W2603670574 citedByCount "13" @default.
- W2603670574 countsByYear W26036705742018 @default.
- W2603670574 countsByYear W26036705742020 @default.
- W2603670574 countsByYear W26036705742021 @default.
- W2603670574 countsByYear W26036705742022 @default.
- W2603670574 countsByYear W26036705742023 @default.
- W2603670574 crossrefType "journal-article" @default.
- W2603670574 hasAuthorship W2603670574A5023831187 @default.
- W2603670574 hasAuthorship W2603670574A5056117468 @default.
- W2603670574 hasAuthorship W2603670574A5086550972 @default.
- W2603670574 hasConcept C105367107 @default.
- W2603670574 hasConcept C105795698 @default.
- W2603670574 hasConcept C119599485 @default.
- W2603670574 hasConcept C127413603 @default.
- W2603670574 hasConcept C139945424 @default.
- W2603670574 hasConcept C150217764 @default.
- W2603670574 hasConcept C154945302 @default.
- W2603670574 hasConcept C186108316 @default.
- W2603670574 hasConcept C18903297 @default.
- W2603670574 hasConcept C195975749 @default.
- W2603670574 hasConcept C2780165032 @default.
- W2603670574 hasConcept C29470771 @default.
- W2603670574 hasConcept C33923547 @default.
- W2603670574 hasConcept C39432304 @default.
- W2603670574 hasConcept C41008148 @default.
- W2603670574 hasConcept C47737302 @default.
- W2603670574 hasConcept C50644808 @default.
- W2603670574 hasConcept C548081761 @default.
- W2603670574 hasConcept C58166 @default.
- W2603670574 hasConcept C68189081 @default.
- W2603670574 hasConcept C86803240 @default.
- W2603670574 hasConcept C87717796 @default.
- W2603670574 hasConceptScore W2603670574C105367107 @default.
- W2603670574 hasConceptScore W2603670574C105795698 @default.
- W2603670574 hasConceptScore W2603670574C119599485 @default.
- W2603670574 hasConceptScore W2603670574C127413603 @default.
- W2603670574 hasConceptScore W2603670574C139945424 @default.
- W2603670574 hasConceptScore W2603670574C150217764 @default.
- W2603670574 hasConceptScore W2603670574C154945302 @default.
- W2603670574 hasConceptScore W2603670574C186108316 @default.
- W2603670574 hasConceptScore W2603670574C18903297 @default.
- W2603670574 hasConceptScore W2603670574C195975749 @default.
- W2603670574 hasConceptScore W2603670574C2780165032 @default.
- W2603670574 hasConceptScore W2603670574C29470771 @default.