Matches in SemOpenAlex for { <https://semopenalex.org/work/W2603974619> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2603974619 abstract "Warranty prediction is a very important task in reliability engineering. It needs to estimate the expected number of failures in any given time period during the length of the warranty contract. Several commercial software packages have been already implemented and used in the industry, including Minitab and Weibull++. The time to failure is usually selected to be a Weibull distribution and no technology improvement in the manufacturing process or in the product design is assumed. This paper introduces a new mathematical model which provides the requested predictions under much more general conditions. It is very common that the design and the manufacturing process of an item will change to fix issues discovered in the field. These changes will result in the change of the failure behavior which is often modeled by a time to failure distribution such as Weibull. In our model we consider a manufacturing plant producing identical items in given numbers during each time period. They are subject to possible failures in any later time period after they are produced and the replacements also can fail later as newly produced items. It is assumed that at a given later time, the technology changes so the time to failure distribution also changes, and all items which are replaced or produced from this time period will follow the new time to failure distribution. In order to plan appropriate inventory strategy it is necessary to predict the expected total number of failures in every time period during the considered warranty time interval. In computing the total number of failures the cumulative effect of the failures of new items as well as those of their possible replacements have to be considered and taken into account. A mathematical model is first introduced, where, for the sake of simplicity, it is assumed that after introducing the new technology the produced or replaced items will no longer fail. The general case can be, however, considered and solved in a similar way. In addition to an analytic solution methodology a simulation study is presented. The Weibull distribution is used in the numerical example, however, it can be replaced with any other distribution type. It is demonstrated that the usual prediction method can be successfully extended into cases when the improvement of the production technology changes the distribution of the time to failure, and therefore the probabilistic properties of all items produced or replaced after this change are also changed. The expectation of the cumulative number of failures in each time period provides important help in finding the most appropriate inventory strategies leading to significant savings in inventory cost as well as in the cost of delayed services." @default.
- W2603974619 created "2017-04-07" @default.
- W2603974619 creator A5011058831 @default.
- W2603974619 creator A5017789014 @default.
- W2603974619 creator A5052126326 @default.
- W2603974619 creator A5091671798 @default.
- W2603974619 date "2017-01-01" @default.
- W2603974619 modified "2023-09-23" @default.
- W2603974619 title "Warranty prediction for parts with design changes" @default.
- W2603974619 cites W126056274 @default.
- W2603974619 cites W2484087285 @default.
- W2603974619 cites W2493698511 @default.
- W2603974619 cites W2518343514 @default.
- W2603974619 doi "https://doi.org/10.1109/ram.2017.7889734" @default.
- W2603974619 hasPublicationYear "2017" @default.
- W2603974619 type Work @default.
- W2603974619 sameAs 2603974619 @default.
- W2603974619 citedByCount "0" @default.
- W2603974619 crossrefType "proceedings-article" @default.
- W2603974619 hasAuthorship W2603974619A5011058831 @default.
- W2603974619 hasAuthorship W2603974619A5017789014 @default.
- W2603974619 hasAuthorship W2603974619A5052126326 @default.
- W2603974619 hasAuthorship W2603974619A5091671798 @default.
- W2603974619 hasConcept C105795698 @default.
- W2603974619 hasConcept C111919701 @default.
- W2603974619 hasConcept C114614502 @default.
- W2603974619 hasConcept C121332964 @default.
- W2603974619 hasConcept C127413603 @default.
- W2603974619 hasConcept C163164238 @default.
- W2603974619 hasConcept C163258240 @default.
- W2603974619 hasConcept C166957645 @default.
- W2603974619 hasConcept C173291955 @default.
- W2603974619 hasConcept C17744445 @default.
- W2603974619 hasConcept C199539241 @default.
- W2603974619 hasConcept C200601418 @default.
- W2603974619 hasConcept C201995342 @default.
- W2603974619 hasConcept C2776505523 @default.
- W2603974619 hasConcept C2778067643 @default.
- W2603974619 hasConcept C2779056723 @default.
- W2603974619 hasConcept C2780451532 @default.
- W2603974619 hasConcept C33923547 @default.
- W2603974619 hasConcept C41008148 @default.
- W2603974619 hasConcept C43214815 @default.
- W2603974619 hasConcept C44154001 @default.
- W2603974619 hasConcept C62520636 @default.
- W2603974619 hasConcept C95457728 @default.
- W2603974619 hasConcept C98045186 @default.
- W2603974619 hasConceptScore W2603974619C105795698 @default.
- W2603974619 hasConceptScore W2603974619C111919701 @default.
- W2603974619 hasConceptScore W2603974619C114614502 @default.
- W2603974619 hasConceptScore W2603974619C121332964 @default.
- W2603974619 hasConceptScore W2603974619C127413603 @default.
- W2603974619 hasConceptScore W2603974619C163164238 @default.
- W2603974619 hasConceptScore W2603974619C163258240 @default.
- W2603974619 hasConceptScore W2603974619C166957645 @default.
- W2603974619 hasConceptScore W2603974619C173291955 @default.
- W2603974619 hasConceptScore W2603974619C17744445 @default.
- W2603974619 hasConceptScore W2603974619C199539241 @default.
- W2603974619 hasConceptScore W2603974619C200601418 @default.
- W2603974619 hasConceptScore W2603974619C201995342 @default.
- W2603974619 hasConceptScore W2603974619C2776505523 @default.
- W2603974619 hasConceptScore W2603974619C2778067643 @default.
- W2603974619 hasConceptScore W2603974619C2779056723 @default.
- W2603974619 hasConceptScore W2603974619C2780451532 @default.
- W2603974619 hasConceptScore W2603974619C33923547 @default.
- W2603974619 hasConceptScore W2603974619C41008148 @default.
- W2603974619 hasConceptScore W2603974619C43214815 @default.
- W2603974619 hasConceptScore W2603974619C44154001 @default.
- W2603974619 hasConceptScore W2603974619C62520636 @default.
- W2603974619 hasConceptScore W2603974619C95457728 @default.
- W2603974619 hasConceptScore W2603974619C98045186 @default.
- W2603974619 hasLocation W26039746191 @default.
- W2603974619 hasOpenAccess W2603974619 @default.
- W2603974619 hasPrimaryLocation W26039746191 @default.
- W2603974619 hasRelatedWork W1966073390 @default.
- W2603974619 hasRelatedWork W1976761366 @default.
- W2603974619 hasRelatedWork W1977410084 @default.
- W2603974619 hasRelatedWork W1985867208 @default.
- W2603974619 hasRelatedWork W2031220359 @default.
- W2603974619 hasRelatedWork W2045358731 @default.
- W2603974619 hasRelatedWork W2052681523 @default.
- W2603974619 hasRelatedWork W2057973089 @default.
- W2603974619 hasRelatedWork W2078470838 @default.
- W2603974619 hasRelatedWork W2139939301 @default.
- W2603974619 hasRelatedWork W2341845479 @default.
- W2603974619 hasRelatedWork W2519575479 @default.
- W2603974619 hasRelatedWork W2766064055 @default.
- W2603974619 hasRelatedWork W2766949835 @default.
- W2603974619 hasRelatedWork W2913498705 @default.
- W2603974619 hasRelatedWork W3113972117 @default.
- W2603974619 hasRelatedWork W3164527256 @default.
- W2603974619 hasRelatedWork W3209862306 @default.
- W2603974619 hasRelatedWork W799547798 @default.
- W2603974619 hasRelatedWork W2576172759 @default.
- W2603974619 isParatext "false" @default.
- W2603974619 isRetracted "false" @default.
- W2603974619 magId "2603974619" @default.
- W2603974619 workType "article" @default.