Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604199387> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2604199387 abstract "Cognitive Science has attracted a new level of prosperity ‘consciousness’ of engineers during recent decades. One of the reasons is that people begin to wonder whether statistically optimal representations by a variety of machine learning methods are aligned with human cognitive activities. The evolution of human perception system and cognition system is a long-time adaptation process and an on-going interaction between natural environments and natural selection. During the course of charting family trees of various species, evolutionary biologists intended to distinguish between primitive and features. Primitive features group alliances agents; and derived features are prone to enlarge the difference among individuals within a specific agent. Wagensberg linked the difference of individuals to the importance of independence for successful ‘life forms’: A living individual is part of the world with some identity that tends to become independent of the uncertainty of the rest of the world. Wagensberg also points out that by creating alliances agents can give up independence for the benefit of a group, which in turns may increase independence for the group as an entity. Our independence hypothesis has been inspired by intriguing facts from using independent component analysis (ICA) algorithm. As a consequence of evolution, human perception system can model complex multi-agent scenery. Humans’ ability of using a broad spectrum of cues for analyzing perceptual input and identification of individual agents, has been studied and furthermore stimulated in computers. The resulting theoretically optimal representations achieved by using a variety of ICA closely resembles representations found in human perceptual systems on visual contrast detection, on visual features involved in color and stereo processing, and on representations of sound features. As a consequence, COgnitive Component Analysis (COCA) was first brought to bear in 2005: the process of unsupervised grouping of data such that the resulting group structure is well-aligned with that resulting from human cognitive activity. We investigated the independent cognitive component hypothesis, which asks the question: Do humans also use these information theoretically optimal ‘ICA’ methods in more generic and abstract data analysis. COCA has been applied to broad topics to review low-level cognitive components. These evidences confirmed that ICA is relevant for representing semantic structure, in text and social networks and musical features; more strikingly for representing information embedded in speech signals, such as phoneme, gender, speaker identity, and even height. Human learns strategies from one perceptual domain to another, and apply them in more or less distinct categories, such as events or objects grouping. In machine learning, the label structures found by unsupervised learning using some real world data sets, are consistent with the labels derived from human cognition. ‘Ray’-structures in latent semantic analysis-like plots, are the key COCA phenomena. Evidences have been found that ‘ray’-structures discovered by COCA, which are understood as the human cognition labels, coincide with labels of the samples in the relevant feature space. The fact that structures by COCA are aligned with labels structures, highlights the possibility of using unlabeled data in supervised learning methods." @default.
- W2604199387 created "2017-04-14" @default.
- W2604199387 creator A5016254929 @default.
- W2604199387 date "2008-11-01" @default.
- W2604199387 modified "2023-09-27" @default.
- W2604199387 title "Cognitive Component Analysis" @default.
- W2604199387 hasPublicationYear "2008" @default.
- W2604199387 type Work @default.
- W2604199387 sameAs 2604199387 @default.
- W2604199387 citedByCount "0" @default.
- W2604199387 crossrefType "journal-article" @default.
- W2604199387 hasAuthorship W2604199387A5016254929 @default.
- W2604199387 hasConcept C105795698 @default.
- W2604199387 hasConcept C116834253 @default.
- W2604199387 hasConcept C136197465 @default.
- W2604199387 hasConcept C139807058 @default.
- W2604199387 hasConcept C154945302 @default.
- W2604199387 hasConcept C15744967 @default.
- W2604199387 hasConcept C169760540 @default.
- W2604199387 hasConcept C169900460 @default.
- W2604199387 hasConcept C17744445 @default.
- W2604199387 hasConcept C180747234 @default.
- W2604199387 hasConcept C186720457 @default.
- W2604199387 hasConcept C188147891 @default.
- W2604199387 hasConcept C18903297 @default.
- W2604199387 hasConcept C199539241 @default.
- W2604199387 hasConcept C26760741 @default.
- W2604199387 hasConcept C2776554220 @default.
- W2604199387 hasConcept C33923547 @default.
- W2604199387 hasConcept C35651441 @default.
- W2604199387 hasConcept C41008148 @default.
- W2604199387 hasConcept C86803240 @default.
- W2604199387 hasConceptScore W2604199387C105795698 @default.
- W2604199387 hasConceptScore W2604199387C116834253 @default.
- W2604199387 hasConceptScore W2604199387C136197465 @default.
- W2604199387 hasConceptScore W2604199387C139807058 @default.
- W2604199387 hasConceptScore W2604199387C154945302 @default.
- W2604199387 hasConceptScore W2604199387C15744967 @default.
- W2604199387 hasConceptScore W2604199387C169760540 @default.
- W2604199387 hasConceptScore W2604199387C169900460 @default.
- W2604199387 hasConceptScore W2604199387C17744445 @default.
- W2604199387 hasConceptScore W2604199387C180747234 @default.
- W2604199387 hasConceptScore W2604199387C186720457 @default.
- W2604199387 hasConceptScore W2604199387C188147891 @default.
- W2604199387 hasConceptScore W2604199387C18903297 @default.
- W2604199387 hasConceptScore W2604199387C199539241 @default.
- W2604199387 hasConceptScore W2604199387C26760741 @default.
- W2604199387 hasConceptScore W2604199387C2776554220 @default.
- W2604199387 hasConceptScore W2604199387C33923547 @default.
- W2604199387 hasConceptScore W2604199387C35651441 @default.
- W2604199387 hasConceptScore W2604199387C41008148 @default.
- W2604199387 hasConceptScore W2604199387C86803240 @default.
- W2604199387 hasLocation W26041993871 @default.
- W2604199387 hasOpenAccess W2604199387 @default.
- W2604199387 hasPrimaryLocation W26041993871 @default.
- W2604199387 hasRelatedWork W1499031883 @default.
- W2604199387 hasRelatedWork W1555531162 @default.
- W2604199387 hasRelatedWork W162587721 @default.
- W2604199387 hasRelatedWork W2066789894 @default.
- W2604199387 hasRelatedWork W2142809429 @default.
- W2604199387 hasRelatedWork W2161907849 @default.
- W2604199387 hasRelatedWork W2492109573 @default.
- W2604199387 hasRelatedWork W2531410730 @default.
- W2604199387 hasRelatedWork W2572828432 @default.
- W2604199387 hasRelatedWork W2745482427 @default.
- W2604199387 hasRelatedWork W2908010869 @default.
- W2604199387 hasRelatedWork W2923677086 @default.
- W2604199387 hasRelatedWork W2965667059 @default.
- W2604199387 hasRelatedWork W3008308855 @default.
- W2604199387 hasRelatedWork W3036528584 @default.
- W2604199387 hasRelatedWork W3038063545 @default.
- W2604199387 hasRelatedWork W3093096163 @default.
- W2604199387 hasRelatedWork W3153606705 @default.
- W2604199387 hasRelatedWork W3159029140 @default.
- W2604199387 hasRelatedWork W3207371441 @default.
- W2604199387 isParatext "false" @default.
- W2604199387 isRetracted "false" @default.
- W2604199387 magId "2604199387" @default.
- W2604199387 workType "article" @default.