Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604208308> ?p ?o ?g. }
- W2604208308 endingPage "244" @default.
- W2604208308 startingPage "197" @default.
- W2604208308 abstract "The rheology of highly concentrated monodisperse emulsions is studied by rigorous multidrop numerical simulations for three types of steady macroscopic flow, (i) simple shear ( $dot{{itgamma}}x_{2}$ , 0 0), (ii) planar extension (PE) ( $dot{{itGamma}}x_{1},-dot{{itGamma}}x_{2},0$ ) and (iii) mixed ( $dot{{itgamma}}x_{2}$ , $dot{{itgamma}}{itchi}x_{1}$ , 0), where $dot{{itgamma}}$ and $dot{{itGamma}}$ are the deformation rates, and ${itchi}in (-1,1)$ is the flow parameter, in order to construct and validate a general constitutive model for emulsion flows with arbitrary kinematics. The algorithm is a development of the multipole-accelerated boundary-integral (BI) code of Zinchenko & Davis ( J. Fluid Mech. , vol. 455, 2002, pp. 21–62). It additionally incorporates periodic boundary conditions for (ii) and (iii) (based on the reproducible lattice dynamics of Kraynik–Reinelt for PE), control of surface overlapping, much more robust controllable surface triangulations for long-time simulations, and more efficient acceleration. The emulsion steady-state viscometric functions (shear viscosity and normal stress differences) for (i) and extensiometric functions (extensional viscosity and stress cross-difference) for (ii) are studied in the range of drop volume fractions $c=0.45{-}0.55$ , drop-to-medium viscosity ratios ${itlambda}=0.25{-}10$ and various capillary numbers $mathit{Ca}$ , with 100–400 drops in a periodic cell and 2000–4000 boundary elements per drop. High surface resolution is important for all three flows at small $mathit{Ca}$ . Large system size and strains $dot{{itgamma}}t$ of up to several thousand are imperative in some shear-flow simulations to identify the onset of phase transition to a partially ordered state, and evaluate (although still not precisely) the viscometric functions in this state. Below the phase transition point, the shear viscosity versus $mathit{Ca}$ shows a kinked behaviour, with the local minimum most pronounced at ${itlambda}=1$ and $c=0.55$ . The ${itlambda}=0.25$ emulsions flow in a partially ordered manner in a wide range of $mathit{Ca}$ even when $c=0.45$ . Increase of ${itlambda}$ to 3–10 shifts the onset of ordering to much smaller $mathit{Ca}$ , often outside the simulation range. In contrast to simple shear, phase transition is never observed in PE or mixed flow. A generalized five-parameter Oldroyd model with variable coefficients is fitted to our extensiometric and viscometric functions at arbitrary flow intensities (but outside the phase transition range). The model predictions compare very well with precise simulation results for strong mixed flows, ${itchi}=0.25$ . Time-dependent PE flow is also considered. Ways to overcome the phase transition and drop breakup limitations on constitutive modelling are discussed." @default.
- W2604208308 created "2017-04-14" @default.
- W2604208308 creator A5023302276 @default.
- W2604208308 creator A5038872428 @default.
- W2604208308 date "2015-08-14" @default.
- W2604208308 modified "2023-09-26" @default.
- W2604208308 title "Extensional and shear flows, and general rheology of concentrated emulsions of deformable drops" @default.
- W2604208308 cites W1614597704 @default.
- W2604208308 cites W1967503613 @default.
- W2604208308 cites W1968046132 @default.
- W2604208308 cites W1981077940 @default.
- W2604208308 cites W1983094797 @default.
- W2604208308 cites W1983193346 @default.
- W2604208308 cites W1990319131 @default.
- W2604208308 cites W1993409120 @default.
- W2604208308 cites W1998685401 @default.
- W2604208308 cites W1999610305 @default.
- W2604208308 cites W2001115949 @default.
- W2604208308 cites W2007487406 @default.
- W2604208308 cites W2030913157 @default.
- W2604208308 cites W2032314519 @default.
- W2604208308 cites W2034409500 @default.
- W2604208308 cites W2035700168 @default.
- W2604208308 cites W2037527182 @default.
- W2604208308 cites W2042761109 @default.
- W2604208308 cites W2072857013 @default.
- W2604208308 cites W2081184323 @default.
- W2604208308 cites W2084902563 @default.
- W2604208308 cites W2087404487 @default.
- W2604208308 cites W2091742598 @default.
- W2604208308 cites W2093087797 @default.
- W2604208308 cites W2099584368 @default.
- W2604208308 cites W2104741465 @default.
- W2604208308 cites W2116216945 @default.
- W2604208308 cites W2125633650 @default.
- W2604208308 cites W2126928925 @default.
- W2604208308 cites W2129536299 @default.
- W2604208308 cites W2146591238 @default.
- W2604208308 cites W2147203738 @default.
- W2604208308 cites W2152383663 @default.
- W2604208308 cites W2153357488 @default.
- W2604208308 cites W2154878445 @default.
- W2604208308 cites W2166340221 @default.
- W2604208308 cites W2476947313 @default.
- W2604208308 cites W4376597291 @default.
- W2604208308 doi "https://doi.org/10.1017/jfm.2015.411" @default.
- W2604208308 hasPublicationYear "2015" @default.
- W2604208308 type Work @default.
- W2604208308 sameAs 2604208308 @default.
- W2604208308 citedByCount "20" @default.
- W2604208308 countsByYear W26042083082016 @default.
- W2604208308 countsByYear W26042083082017 @default.
- W2604208308 countsByYear W26042083082018 @default.
- W2604208308 countsByYear W26042083082019 @default.
- W2604208308 countsByYear W26042083082020 @default.
- W2604208308 countsByYear W26042083082021 @default.
- W2604208308 countsByYear W26042083082022 @default.
- W2604208308 countsByYear W26042083082023 @default.
- W2604208308 crossrefType "journal-article" @default.
- W2604208308 hasAuthorship W2604208308A5023302276 @default.
- W2604208308 hasAuthorship W2604208308A5038872428 @default.
- W2604208308 hasConcept C101082671 @default.
- W2604208308 hasConcept C121332964 @default.
- W2604208308 hasConcept C127172972 @default.
- W2604208308 hasConcept C135768490 @default.
- W2604208308 hasConcept C165682214 @default.
- W2604208308 hasConcept C192562407 @default.
- W2604208308 hasConcept C200990466 @default.
- W2604208308 hasConcept C21141959 @default.
- W2604208308 hasConcept C2781345722 @default.
- W2604208308 hasConcept C294558 @default.
- W2604208308 hasConcept C41008148 @default.
- W2604208308 hasConcept C57879066 @default.
- W2604208308 hasConcept C76155785 @default.
- W2604208308 hasConcept C97355855 @default.
- W2604208308 hasConceptScore W2604208308C101082671 @default.
- W2604208308 hasConceptScore W2604208308C121332964 @default.
- W2604208308 hasConceptScore W2604208308C127172972 @default.
- W2604208308 hasConceptScore W2604208308C135768490 @default.
- W2604208308 hasConceptScore W2604208308C165682214 @default.
- W2604208308 hasConceptScore W2604208308C192562407 @default.
- W2604208308 hasConceptScore W2604208308C200990466 @default.
- W2604208308 hasConceptScore W2604208308C21141959 @default.
- W2604208308 hasConceptScore W2604208308C2781345722 @default.
- W2604208308 hasConceptScore W2604208308C294558 @default.
- W2604208308 hasConceptScore W2604208308C41008148 @default.
- W2604208308 hasConceptScore W2604208308C57879066 @default.
- W2604208308 hasConceptScore W2604208308C76155785 @default.
- W2604208308 hasConceptScore W2604208308C97355855 @default.
- W2604208308 hasLocation W26042083081 @default.
- W2604208308 hasOpenAccess W2604208308 @default.
- W2604208308 hasPrimaryLocation W26042083081 @default.
- W2604208308 hasRelatedWork W1576900892 @default.
- W2604208308 hasRelatedWork W1594425328 @default.
- W2604208308 hasRelatedWork W1968231597 @default.
- W2604208308 hasRelatedWork W1974311879 @default.
- W2604208308 hasRelatedWork W1994450720 @default.
- W2604208308 hasRelatedWork W2141500866 @default.