Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604242010> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2604242010 abstract "Latent factor models and decision tree based models are widely used in tasks of prediction, ranking and recommendation. Latent factor models have the advantage of interpreting categorical features by a low-dimensional representation, while such an interpretation does not naturally fit numerical features. In contrast, decision tree based models enjoy the advantage of capturing the nonlinear interactions of numerical features, while their capability of handling categorical features is limited by the cardinality of those features. Since in real-world applications we usually have both abundant numerical features and categorical features with large cardinality (e.g. geolocations, IDs, tags etc.), we design a new model, called GB-CENT, which leverages latent factor embedding and tree components to achieve the merits of both while avoiding their demerits. With two real-world data sets, we demonstrate that GB-CENT can effectively (i.e. fast and accurately) achieve better accuracy than state-of-the-art matrix factorization, decision tree based models and their ensemble." @default.
- W2604242010 created "2017-04-14" @default.
- W2604242010 creator A5030878379 @default.
- W2604242010 creator A5058135898 @default.
- W2604242010 creator A5086649532 @default.
- W2604242010 date "2017-04-03" @default.
- W2604242010 modified "2023-10-17" @default.
- W2604242010 title "GB-CENT" @default.
- W2604242010 cites W1994389483 @default.
- W2604242010 cites W2014039589 @default.
- W2604242010 cites W2018571751 @default.
- W2604242010 cites W2049670925 @default.
- W2604242010 cites W2054141820 @default.
- W2604242010 cites W2054553473 @default.
- W2604242010 cites W2076618162 @default.
- W2604242010 cites W2094286023 @default.
- W2604242010 cites W2101409192 @default.
- W2604242010 cites W2102937240 @default.
- W2604242010 cites W2117420919 @default.
- W2604242010 cites W2155912844 @default.
- W2604242010 cites W2173213060 @default.
- W2604242010 cites W2219888463 @default.
- W2604242010 cites W2396895200 @default.
- W2604242010 cites W2911964244 @default.
- W2604242010 cites W3102476541 @default.
- W2604242010 cites W3148981562 @default.
- W2604242010 doi "https://doi.org/10.1145/3038912.3052668" @default.
- W2604242010 hasPublicationYear "2017" @default.
- W2604242010 type Work @default.
- W2604242010 sameAs 2604242010 @default.
- W2604242010 citedByCount "23" @default.
- W2604242010 countsByYear W26042420102018 @default.
- W2604242010 countsByYear W26042420102019 @default.
- W2604242010 countsByYear W26042420102020 @default.
- W2604242010 countsByYear W26042420102021 @default.
- W2604242010 countsByYear W26042420102023 @default.
- W2604242010 crossrefType "proceedings-article" @default.
- W2604242010 hasAuthorship W2604242010A5030878379 @default.
- W2604242010 hasAuthorship W2604242010A5058135898 @default.
- W2604242010 hasAuthorship W2604242010A5086649532 @default.
- W2604242010 hasConcept C113174947 @default.
- W2604242010 hasConcept C119857082 @default.
- W2604242010 hasConcept C124101348 @default.
- W2604242010 hasConcept C134306372 @default.
- W2604242010 hasConcept C153180895 @default.
- W2604242010 hasConcept C154945302 @default.
- W2604242010 hasConcept C17744445 @default.
- W2604242010 hasConcept C189430467 @default.
- W2604242010 hasConcept C199360897 @default.
- W2604242010 hasConcept C199539241 @default.
- W2604242010 hasConcept C2776359362 @default.
- W2604242010 hasConcept C2781039887 @default.
- W2604242010 hasConcept C33923547 @default.
- W2604242010 hasConcept C41008148 @default.
- W2604242010 hasConcept C41608201 @default.
- W2604242010 hasConcept C51167844 @default.
- W2604242010 hasConcept C5274069 @default.
- W2604242010 hasConcept C84525736 @default.
- W2604242010 hasConcept C87117476 @default.
- W2604242010 hasConcept C94625758 @default.
- W2604242010 hasConceptScore W2604242010C113174947 @default.
- W2604242010 hasConceptScore W2604242010C119857082 @default.
- W2604242010 hasConceptScore W2604242010C124101348 @default.
- W2604242010 hasConceptScore W2604242010C134306372 @default.
- W2604242010 hasConceptScore W2604242010C153180895 @default.
- W2604242010 hasConceptScore W2604242010C154945302 @default.
- W2604242010 hasConceptScore W2604242010C17744445 @default.
- W2604242010 hasConceptScore W2604242010C189430467 @default.
- W2604242010 hasConceptScore W2604242010C199360897 @default.
- W2604242010 hasConceptScore W2604242010C199539241 @default.
- W2604242010 hasConceptScore W2604242010C2776359362 @default.
- W2604242010 hasConceptScore W2604242010C2781039887 @default.
- W2604242010 hasConceptScore W2604242010C33923547 @default.
- W2604242010 hasConceptScore W2604242010C41008148 @default.
- W2604242010 hasConceptScore W2604242010C41608201 @default.
- W2604242010 hasConceptScore W2604242010C51167844 @default.
- W2604242010 hasConceptScore W2604242010C5274069 @default.
- W2604242010 hasConceptScore W2604242010C84525736 @default.
- W2604242010 hasConceptScore W2604242010C87117476 @default.
- W2604242010 hasConceptScore W2604242010C94625758 @default.
- W2604242010 hasLocation W26042420101 @default.
- W2604242010 hasOpenAccess W2604242010 @default.
- W2604242010 hasPrimaryLocation W26042420101 @default.
- W2604242010 hasRelatedWork W1596801655 @default.
- W2604242010 hasRelatedWork W1972437902 @default.
- W2604242010 hasRelatedWork W2358668433 @default.
- W2604242010 hasRelatedWork W2373011076 @default.
- W2604242010 hasRelatedWork W2376932109 @default.
- W2604242010 hasRelatedWork W2387147530 @default.
- W2604242010 hasRelatedWork W2390279801 @default.
- W2604242010 hasRelatedWork W2688602461 @default.
- W2604242010 hasRelatedWork W2748952813 @default.
- W2604242010 hasRelatedWork W2899084033 @default.
- W2604242010 isParatext "false" @default.
- W2604242010 isRetracted "false" @default.
- W2604242010 magId "2604242010" @default.
- W2604242010 workType "article" @default.