Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604611055> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2604611055 endingPage "53" @default.
- W2604611055 startingPage "53" @default.
- W2604611055 abstract "In recent years, Neural Network (NN) has gained popularity in proffering solution to complex nonlinear problems. Monitoring of variations in Petroleum Products Pipeline (PPP) attributes (flow rate, pressure, temperature, viscosity, density, inlet and outlet volume) which changes with time is complex due to existence of non linear interaction amongst the attributes. The existing works on PPP monitoring are limited by lack of capabilities for pattern recognition and learning from previous data. In this paper, NN models with pattern recognition and learning capabilities are compared with a view of selecting the best model for monitoring PPP. Data was collected from Pipelines and Products Marketing Company (PPMC), Port Harcourt, Nigeria. The data was used for NN training, validation and testing with different NN models such as Multilayer Perceptron (MLP), Radial Basis Function (RBF), Generalized Feed Forward (GFF), Support Vector Machine (SVM), Time Delay Network (TDN) and Recurrent Neural Network (RNN). Neuro Solutions 6.0 was used as the front-end-engine for NN training, validation and testing while My Structured Query Language (MySQL) database served as the back-end-engine. Performance of NN models was measured using Mean Squared Error (MSE), Mean Absolute Error (MAE), Correlation Coefficient (r), Akaike Information Criteria (AIC) and Minimum Descriptive Length (MDL). MLP with one hidden layer and three processing elements performed better than other NN models in terms of MSE, MAE, AIC, MDL and r values between the computed and the desired output." @default.
- W2604611055 created "2017-04-14" @default.
- W2604611055 creator A5050849127 @default.
- W2604611055 creator A5051715921 @default.
- W2604611055 creator A5054957627 @default.
- W2604611055 date "2017-04-06" @default.
- W2604611055 modified "2023-09-26" @default.
- W2604611055 title "Comparative Analysis of Neural Network Models for Petroleum Products Pipeline Monitoring" @default.
- W2604611055 cites W2044611148 @default.
- W2604611055 cites W2134499976 @default.
- W2604611055 cites W2156786022 @default.
- W2604611055 doi "https://doi.org/10.11114/set.v4i1.2340" @default.
- W2604611055 hasPublicationYear "2017" @default.
- W2604611055 type Work @default.
- W2604611055 sameAs 2604611055 @default.
- W2604611055 citedByCount "0" @default.
- W2604611055 crossrefType "journal-article" @default.
- W2604611055 hasAuthorship W2604611055A5050849127 @default.
- W2604611055 hasAuthorship W2604611055A5051715921 @default.
- W2604611055 hasAuthorship W2604611055A5054957627 @default.
- W2604611055 hasBestOaLocation W26046110551 @default.
- W2604611055 hasConcept C105795698 @default.
- W2604611055 hasConcept C119857082 @default.
- W2604611055 hasConcept C12267149 @default.
- W2604611055 hasConcept C124101348 @default.
- W2604611055 hasConcept C126674687 @default.
- W2604611055 hasConcept C139945424 @default.
- W2604611055 hasConcept C153180895 @default.
- W2604611055 hasConcept C154945302 @default.
- W2604611055 hasConcept C155032097 @default.
- W2604611055 hasConcept C179717631 @default.
- W2604611055 hasConcept C199360897 @default.
- W2604611055 hasConcept C33923547 @default.
- W2604611055 hasConcept C41008148 @default.
- W2604611055 hasConcept C43521106 @default.
- W2604611055 hasConcept C50644808 @default.
- W2604611055 hasConcept C60908668 @default.
- W2604611055 hasConcept C98856871 @default.
- W2604611055 hasConceptScore W2604611055C105795698 @default.
- W2604611055 hasConceptScore W2604611055C119857082 @default.
- W2604611055 hasConceptScore W2604611055C12267149 @default.
- W2604611055 hasConceptScore W2604611055C124101348 @default.
- W2604611055 hasConceptScore W2604611055C126674687 @default.
- W2604611055 hasConceptScore W2604611055C139945424 @default.
- W2604611055 hasConceptScore W2604611055C153180895 @default.
- W2604611055 hasConceptScore W2604611055C154945302 @default.
- W2604611055 hasConceptScore W2604611055C155032097 @default.
- W2604611055 hasConceptScore W2604611055C179717631 @default.
- W2604611055 hasConceptScore W2604611055C199360897 @default.
- W2604611055 hasConceptScore W2604611055C33923547 @default.
- W2604611055 hasConceptScore W2604611055C41008148 @default.
- W2604611055 hasConceptScore W2604611055C43521106 @default.
- W2604611055 hasConceptScore W2604611055C50644808 @default.
- W2604611055 hasConceptScore W2604611055C60908668 @default.
- W2604611055 hasConceptScore W2604611055C98856871 @default.
- W2604611055 hasIssue "1" @default.
- W2604611055 hasLocation W26046110551 @default.
- W2604611055 hasOpenAccess W2604611055 @default.
- W2604611055 hasPrimaryLocation W26046110551 @default.
- W2604611055 hasRelatedWork W1586146650 @default.
- W2604611055 hasRelatedWork W1999240820 @default.
- W2604611055 hasRelatedWork W2004997985 @default.
- W2604611055 hasRelatedWork W2011533104 @default.
- W2604611055 hasRelatedWork W2085381944 @default.
- W2604611055 hasRelatedWork W2171948077 @default.
- W2604611055 hasRelatedWork W2186810643 @default.
- W2604611055 hasRelatedWork W2271910286 @default.
- W2604611055 hasRelatedWork W2351108126 @default.
- W2604611055 hasRelatedWork W2402878743 @default.
- W2604611055 hasRelatedWork W2604101733 @default.
- W2604611055 hasRelatedWork W2802252494 @default.
- W2604611055 hasRelatedWork W2901004778 @default.
- W2604611055 hasRelatedWork W2905816632 @default.
- W2604611055 hasRelatedWork W2914741930 @default.
- W2604611055 hasRelatedWork W2993212056 @default.
- W2604611055 hasRelatedWork W2997673514 @default.
- W2604611055 hasRelatedWork W35220511 @default.
- W2604611055 hasRelatedWork W54626961 @default.
- W2604611055 hasRelatedWork W258950603 @default.
- W2604611055 hasVolume "4" @default.
- W2604611055 isParatext "false" @default.
- W2604611055 isRetracted "false" @default.
- W2604611055 magId "2604611055" @default.
- W2604611055 workType "article" @default.