Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604920239> ?p ?o ?g. }
- W2604920239 endingPage "396" @default.
- W2604920239 startingPage "378" @default.
- W2604920239 abstract "This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software." @default.
- W2604920239 created "2017-04-14" @default.
- W2604920239 creator A5033713529 @default.
- W2604920239 creator A5044694251 @default.
- W2604920239 creator A5065838160 @default.
- W2604920239 creator A5086935121 @default.
- W2604920239 date "2017-09-01" @default.
- W2604920239 modified "2023-10-18" @default.
- W2604920239 title "Quicksilver: Fast predictive image registration – A deep learning approach" @default.
- W2604920239 cites W1507084921 @default.
- W2604920239 cites W1508195517 @default.
- W2604920239 cites W1518961746 @default.
- W2604920239 cites W1578285471 @default.
- W2604920239 cites W1591163814 @default.
- W2604920239 cites W171407896 @default.
- W2604920239 cites W1831299220 @default.
- W2604920239 cites W1835013956 @default.
- W2604920239 cites W1874027545 @default.
- W2604920239 cites W1963605855 @default.
- W2604920239 cites W1970928383 @default.
- W2604920239 cites W1985586071 @default.
- W2604920239 cites W2000529452 @default.
- W2604920239 cites W2009761203 @default.
- W2604920239 cites W2016650517 @default.
- W2604920239 cites W2024524081 @default.
- W2604920239 cites W2024729467 @default.
- W2604920239 cites W2038056514 @default.
- W2604920239 cites W2049023713 @default.
- W2604920239 cites W2051036306 @default.
- W2604920239 cites W2056226026 @default.
- W2604920239 cites W2067470376 @default.
- W2604920239 cites W2081834074 @default.
- W2604920239 cites W2102099319 @default.
- W2604920239 cites W2103857226 @default.
- W2604920239 cites W2113576511 @default.
- W2604920239 cites W2115167851 @default.
- W2604920239 cites W2121014637 @default.
- W2604920239 cites W2122034173 @default.
- W2604920239 cites W2123464668 @default.
- W2604920239 cites W2139886607 @default.
- W2604920239 cites W2140139548 @default.
- W2604920239 cites W2140204353 @default.
- W2604920239 cites W2150534249 @default.
- W2604920239 cites W2155298532 @default.
- W2604920239 cites W2155634500 @default.
- W2604920239 cites W2170167891 @default.
- W2604920239 cites W2170509487 @default.
- W2604920239 cites W2344328023 @default.
- W2604920239 cites W2395611524 @default.
- W2604920239 cites W2588003167 @default.
- W2604920239 cites W2604920239 @default.
- W2604920239 cites W2610639222 @default.
- W2604920239 cites W761490984 @default.
- W2604920239 doi "https://doi.org/10.1016/j.neuroimage.2017.07.008" @default.
- W2604920239 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6036629" @default.
- W2604920239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28705497" @default.
- W2604920239 hasPublicationYear "2017" @default.
- W2604920239 type Work @default.
- W2604920239 sameAs 2604920239 @default.
- W2604920239 citedByCount "466" @default.
- W2604920239 countsByYear W26049202392017 @default.
- W2604920239 countsByYear W26049202392018 @default.
- W2604920239 countsByYear W26049202392019 @default.
- W2604920239 countsByYear W26049202392020 @default.
- W2604920239 countsByYear W26049202392021 @default.
- W2604920239 countsByYear W26049202392022 @default.
- W2604920239 countsByYear W26049202392023 @default.
- W2604920239 crossrefType "journal-article" @default.
- W2604920239 hasAuthorship W2604920239A5033713529 @default.
- W2604920239 hasAuthorship W2604920239A5044694251 @default.
- W2604920239 hasAuthorship W2604920239A5065838160 @default.
- W2604920239 hasAuthorship W2604920239A5086935121 @default.
- W2604920239 hasBestOaLocation W26049202391 @default.
- W2604920239 hasConcept C103278499 @default.
- W2604920239 hasConcept C11413529 @default.
- W2604920239 hasConcept C115961682 @default.
- W2604920239 hasConcept C134306372 @default.
- W2604920239 hasConcept C153180895 @default.
- W2604920239 hasConcept C154945302 @default.
- W2604920239 hasConcept C162324750 @default.
- W2604920239 hasConcept C166704113 @default.
- W2604920239 hasConcept C176217482 @default.
- W2604920239 hasConcept C21547014 @default.
- W2604920239 hasConcept C2776135515 @default.
- W2604920239 hasConcept C31972630 @default.
- W2604920239 hasConcept C33923547 @default.
- W2604920239 hasConcept C41008148 @default.
- W2604920239 hasConcept C47556283 @default.
- W2604920239 hasConcept C49937458 @default.
- W2604920239 hasConceptScore W2604920239C103278499 @default.
- W2604920239 hasConceptScore W2604920239C11413529 @default.
- W2604920239 hasConceptScore W2604920239C115961682 @default.
- W2604920239 hasConceptScore W2604920239C134306372 @default.
- W2604920239 hasConceptScore W2604920239C153180895 @default.
- W2604920239 hasConceptScore W2604920239C154945302 @default.
- W2604920239 hasConceptScore W2604920239C162324750 @default.
- W2604920239 hasConceptScore W2604920239C166704113 @default.
- W2604920239 hasConceptScore W2604920239C176217482 @default.