Matches in SemOpenAlex for { <https://semopenalex.org/work/W2604985514> ?p ?o ?g. }
- W2604985514 endingPage "177" @default.
- W2604985514 startingPage "165" @default.
- W2604985514 abstract "We propose a novel drowsiness detection method based on 3D-Deep Convolutional Neural Network (3D-DCNN). We design a learning architecture for the drowsiness detection, which consists of three building blocks for representation learning, scene understanding, and feature fusion. In this framework, the model generates a spatio-temporal representation from multiple consecutive frames and analyze the scene conditions which are defined as head, eye, and mouth movements. The result of analysis from the scene condition understanding model is used to auxiliary information for the drowsiness detection. Then the method subsequently generates fusion features using the spatio-temporal representation and the results of the classification of scene conditions. By using the fusion features, we show that the proposed method can boost the performance of drowsiness detection. The proposed method demonstrates with the NTHU Drowsy Driver Detection (NTHU-DDD) video dataset." @default.
- W2604985514 created "2017-04-14" @default.
- W2604985514 creator A5049407736 @default.
- W2604985514 creator A5056280822 @default.
- W2604985514 creator A5056743652 @default.
- W2604985514 creator A5087023232 @default.
- W2604985514 date "2017-01-01" @default.
- W2604985514 modified "2023-10-18" @default.
- W2604985514 title "Representation Learning, Scene Understanding, and Feature Fusion for Drowsiness Detection" @default.
- W2604985514 cites W1522734439 @default.
- W2604985514 cites W1597987670 @default.
- W2604985514 cites W1628899544 @default.
- W2604985514 cites W1970456555 @default.
- W2604985514 cites W1970819022 @default.
- W2604985514 cites W1988012335 @default.
- W2604985514 cites W1990761138 @default.
- W2604985514 cites W1996754940 @default.
- W2604985514 cites W1996897447 @default.
- W2604985514 cites W2016124771 @default.
- W2604985514 cites W2049712033 @default.
- W2604985514 cites W2050383794 @default.
- W2604985514 cites W2060854485 @default.
- W2604985514 cites W2071878275 @default.
- W2604985514 cites W2083638830 @default.
- W2604985514 cites W2091984081 @default.
- W2604985514 cites W2092728879 @default.
- W2604985514 cites W2094726855 @default.
- W2604985514 cites W2116263092 @default.
- W2604985514 cites W2160039372 @default.
- W2604985514 cites W2160595088 @default.
- W2604985514 cites W2183182206 @default.
- W2604985514 cites W2257483379 @default.
- W2604985514 cites W2962791923 @default.
- W2604985514 doi "https://doi.org/10.1007/978-3-319-54526-4_13" @default.
- W2604985514 hasPublicationYear "2017" @default.
- W2604985514 type Work @default.
- W2604985514 sameAs 2604985514 @default.
- W2604985514 citedByCount "16" @default.
- W2604985514 countsByYear W26049855142017 @default.
- W2604985514 countsByYear W26049855142018 @default.
- W2604985514 countsByYear W26049855142019 @default.
- W2604985514 countsByYear W26049855142020 @default.
- W2604985514 countsByYear W26049855142021 @default.
- W2604985514 countsByYear W26049855142022 @default.
- W2604985514 countsByYear W26049855142023 @default.
- W2604985514 crossrefType "book-chapter" @default.
- W2604985514 hasAuthorship W2604985514A5049407736 @default.
- W2604985514 hasAuthorship W2604985514A5056280822 @default.
- W2604985514 hasAuthorship W2604985514A5056743652 @default.
- W2604985514 hasAuthorship W2604985514A5087023232 @default.
- W2604985514 hasConcept C108583219 @default.
- W2604985514 hasConcept C138885662 @default.
- W2604985514 hasConcept C153180895 @default.
- W2604985514 hasConcept C154945302 @default.
- W2604985514 hasConcept C158525013 @default.
- W2604985514 hasConcept C17744445 @default.
- W2604985514 hasConcept C199539241 @default.
- W2604985514 hasConcept C2776359362 @default.
- W2604985514 hasConcept C2776401178 @default.
- W2604985514 hasConcept C31972630 @default.
- W2604985514 hasConcept C41008148 @default.
- W2604985514 hasConcept C41895202 @default.
- W2604985514 hasConcept C52622490 @default.
- W2604985514 hasConcept C59404180 @default.
- W2604985514 hasConcept C81363708 @default.
- W2604985514 hasConcept C94625758 @default.
- W2604985514 hasConceptScore W2604985514C108583219 @default.
- W2604985514 hasConceptScore W2604985514C138885662 @default.
- W2604985514 hasConceptScore W2604985514C153180895 @default.
- W2604985514 hasConceptScore W2604985514C154945302 @default.
- W2604985514 hasConceptScore W2604985514C158525013 @default.
- W2604985514 hasConceptScore W2604985514C17744445 @default.
- W2604985514 hasConceptScore W2604985514C199539241 @default.
- W2604985514 hasConceptScore W2604985514C2776359362 @default.
- W2604985514 hasConceptScore W2604985514C2776401178 @default.
- W2604985514 hasConceptScore W2604985514C31972630 @default.
- W2604985514 hasConceptScore W2604985514C41008148 @default.
- W2604985514 hasConceptScore W2604985514C41895202 @default.
- W2604985514 hasConceptScore W2604985514C52622490 @default.
- W2604985514 hasConceptScore W2604985514C59404180 @default.
- W2604985514 hasConceptScore W2604985514C81363708 @default.
- W2604985514 hasConceptScore W2604985514C94625758 @default.
- W2604985514 hasLocation W26049855141 @default.
- W2604985514 hasOpenAccess W2604985514 @default.
- W2604985514 hasPrimaryLocation W26049855141 @default.
- W2604985514 hasRelatedWork W2279398222 @default.
- W2604985514 hasRelatedWork W2546942002 @default.
- W2604985514 hasRelatedWork W2592385986 @default.
- W2604985514 hasRelatedWork W2731899572 @default.
- W2604985514 hasRelatedWork W2970216048 @default.
- W2604985514 hasRelatedWork W3156786002 @default.
- W2604985514 hasRelatedWork W4299822940 @default.
- W2604985514 hasRelatedWork W4312417841 @default.
- W2604985514 hasRelatedWork W4321369474 @default.
- W2604985514 hasRelatedWork W4366492315 @default.
- W2604985514 isParatext "false" @default.
- W2604985514 isRetracted "false" @default.
- W2604985514 magId "2604985514" @default.