Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605111418> ?p ?o ?g. }
- W2605111418 endingPage "209" @default.
- W2605111418 startingPage "197" @default.
- W2605111418 abstract "In the present world of ‘Big Data,’ the communication channels are always remaining busy and overloaded to transfer quintillion bytes of information. To design an effective equalizer to prevent the inter-symbol interference in such scenario is a challenging task. In this paper, we develop equalizers based on a nonlinear neural structure (wavelet neural network (WNN)) and train it's weighted by a recently developed meta-heuristic (symbiotic organisms search algorithm). The performance of the proposed equalizer is compared with WNN trained by cat swarm optimization (CSO) and clonal selection algorithm (CLONAL), particle swarm optimization (PSO) and least mean square algorithm (LMS). The performance is also compared with other equalizers with structure based on functional link artificial neural network (trigonometric FLANN), radial basis function network (RBF) and finite impulse response filter (FIR). The superior performance is demonstrated on equalization of two non-linear three taps channels and a linear twenty-three taps telephonic channel. It is observed that the performance of the gradient algorithm based equalizers fails in the presence of burst error. The robustness in the performance of the proposed equalizers to handle the burst error conditions is also demonstrated." @default.
- W2605111418 created "2017-04-14" @default.
- W2605111418 creator A5001748232 @default.
- W2605111418 creator A5062755345 @default.
- W2605111418 date "2017-08-01" @default.
- W2605111418 modified "2023-09-26" @default.
- W2605111418 title "Robust nonlinear channel equalization using WNN trained by symbiotic organism search algorithm" @default.
- W2605111418 cites W13147809 @default.
- W2605111418 cites W1969487735 @default.
- W2605111418 cites W1975712136 @default.
- W2605111418 cites W1980128496 @default.
- W2605111418 cites W1981280948 @default.
- W2605111418 cites W1983354887 @default.
- W2605111418 cites W1984152361 @default.
- W2605111418 cites W1997654561 @default.
- W2605111418 cites W2000038552 @default.
- W2605111418 cites W2005275460 @default.
- W2605111418 cites W2006447203 @default.
- W2605111418 cites W2030319782 @default.
- W2605111418 cites W2031910772 @default.
- W2605111418 cites W2039041360 @default.
- W2605111418 cites W2048327552 @default.
- W2605111418 cites W2051086873 @default.
- W2605111418 cites W2051435691 @default.
- W2605111418 cites W2053369089 @default.
- W2605111418 cites W2065945697 @default.
- W2605111418 cites W2075852082 @default.
- W2605111418 cites W2076408892 @default.
- W2605111418 cites W2077782702 @default.
- W2605111418 cites W2081823205 @default.
- W2605111418 cites W2086128742 @default.
- W2605111418 cites W2087477392 @default.
- W2605111418 cites W2088541784 @default.
- W2605111418 cites W2090051694 @default.
- W2605111418 cites W2091638274 @default.
- W2605111418 cites W2093609627 @default.
- W2605111418 cites W2097987904 @default.
- W2605111418 cites W2098386213 @default.
- W2605111418 cites W2104900296 @default.
- W2605111418 cites W2107424704 @default.
- W2605111418 cites W2115397446 @default.
- W2605111418 cites W2117103364 @default.
- W2605111418 cites W2117481010 @default.
- W2605111418 cites W2119926576 @default.
- W2605111418 cites W2121546278 @default.
- W2605111418 cites W2127221278 @default.
- W2605111418 cites W2128810507 @default.
- W2605111418 cites W2133539287 @default.
- W2605111418 cites W2134288234 @default.
- W2605111418 cites W2157850096 @default.
- W2605111418 cites W2160323149 @default.
- W2605111418 cites W2172159883 @default.
- W2605111418 cites W2311297018 @default.
- W2605111418 doi "https://doi.org/10.1016/j.asoc.2017.03.029" @default.
- W2605111418 hasPublicationYear "2017" @default.
- W2605111418 type Work @default.
- W2605111418 sameAs 2605111418 @default.
- W2605111418 citedByCount "32" @default.
- W2605111418 countsByYear W26051114182018 @default.
- W2605111418 countsByYear W26051114182019 @default.
- W2605111418 countsByYear W26051114182020 @default.
- W2605111418 countsByYear W26051114182021 @default.
- W2605111418 countsByYear W26051114182022 @default.
- W2605111418 countsByYear W26051114182023 @default.
- W2605111418 crossrefType "journal-article" @default.
- W2605111418 hasAuthorship W2605111418A5001748232 @default.
- W2605111418 hasAuthorship W2605111418A5062755345 @default.
- W2605111418 hasConcept C104317684 @default.
- W2605111418 hasConcept C11413529 @default.
- W2605111418 hasConcept C117241572 @default.
- W2605111418 hasConcept C121332964 @default.
- W2605111418 hasConcept C154945302 @default.
- W2605111418 hasConcept C158622935 @default.
- W2605111418 hasConcept C185592680 @default.
- W2605111418 hasConcept C41008148 @default.
- W2605111418 hasConcept C50644808 @default.
- W2605111418 hasConcept C55493867 @default.
- W2605111418 hasConcept C62520636 @default.
- W2605111418 hasConcept C63479239 @default.
- W2605111418 hasConcept C85617194 @default.
- W2605111418 hasConceptScore W2605111418C104317684 @default.
- W2605111418 hasConceptScore W2605111418C11413529 @default.
- W2605111418 hasConceptScore W2605111418C117241572 @default.
- W2605111418 hasConceptScore W2605111418C121332964 @default.
- W2605111418 hasConceptScore W2605111418C154945302 @default.
- W2605111418 hasConceptScore W2605111418C158622935 @default.
- W2605111418 hasConceptScore W2605111418C185592680 @default.
- W2605111418 hasConceptScore W2605111418C41008148 @default.
- W2605111418 hasConceptScore W2605111418C50644808 @default.
- W2605111418 hasConceptScore W2605111418C55493867 @default.
- W2605111418 hasConceptScore W2605111418C62520636 @default.
- W2605111418 hasConceptScore W2605111418C63479239 @default.
- W2605111418 hasConceptScore W2605111418C85617194 @default.
- W2605111418 hasLocation W26051114181 @default.
- W2605111418 hasOpenAccess W2605111418 @default.
- W2605111418 hasPrimaryLocation W26051114181 @default.
- W2605111418 hasRelatedWork W2022940507 @default.
- W2605111418 hasRelatedWork W2034357437 @default.