Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605192065> ?p ?o ?g. }
- W2605192065 abstract "A Wiener path integral (WPI)-based approximate technique is developed for determining the joint response probability density function (PDF) of a class of one-dimensional stochastic mechanics problems. Specifically, employing a variational formulation and relying on the concept of the most probable path, the original stochastic problem is recast into a number of deterministic boundary value problems (BVPs) to be solved numerically. Next, it is shown that by employing a Rayleigh-Ritz solution scheme for the BVP, and potentially combining with an appropriate expansion for the joint response PDF, the total computational cost of the technique is kept at a minimal level. In particular, the system response PDF at a specific point in space is determined by solving only very few deterministic systems of algebraic equations. The developed WPI technique can account for nonhomogeneous stochastic fields modeling the material properties as well. Further, it can be construed as a local technique due to the fact that the response PDF at a specific point of interest can be directly determined without the need for obtaining the global solution first. This feature renders the technique particularly well-suited for determining efficiently statistics of effective material properties in homogenization problems, which, in many cases, require knowledge of response statistics at few points/regions only. Finally, the stochastic beam bending problem is considered in detail as an illustrative example. In this regard, a specific case is included as well where, notably, the exact beam joint response PDF coincides with the WPI approximate solution. Comparisons with pertinent Monte Carlo simulation data demonstrate the reliability of the technique." @default.
- W2605192065 created "2017-04-14" @default.
- W2605192065 creator A5065925052 @default.
- W2605192065 date "2017-06-01" @default.
- W2605192065 modified "2023-10-18" @default.
- W2605192065 title "A Wiener Path Integral Solution Treatment and Effective Material Properties of a Class of One-Dimensional Stochastic Mechanics Problems" @default.
- W2605192065 cites W1803765009 @default.
- W2605192065 cites W1965597870 @default.
- W2605192065 cites W1966403857 @default.
- W2605192065 cites W1970888619 @default.
- W2605192065 cites W1971699015 @default.
- W2605192065 cites W1978235180 @default.
- W2605192065 cites W1981635829 @default.
- W2605192065 cites W1986286822 @default.
- W2605192065 cites W1992516344 @default.
- W2605192065 cites W1997093580 @default.
- W2605192065 cites W2004544914 @default.
- W2605192065 cites W2007973956 @default.
- W2605192065 cites W2011180877 @default.
- W2605192065 cites W2011521894 @default.
- W2605192065 cites W2021874860 @default.
- W2605192065 cites W2034662659 @default.
- W2605192065 cites W2036879145 @default.
- W2605192065 cites W2039678757 @default.
- W2605192065 cites W2039832289 @default.
- W2605192065 cites W2042014631 @default.
- W2605192065 cites W2058496561 @default.
- W2605192065 cites W2060649740 @default.
- W2605192065 cites W2061086430 @default.
- W2605192065 cites W2076012407 @default.
- W2605192065 cites W2081454624 @default.
- W2605192065 cites W2087703210 @default.
- W2605192065 cites W2090406470 @default.
- W2605192065 cites W2095494648 @default.
- W2605192065 cites W2101505636 @default.
- W2605192065 cites W2128284457 @default.
- W2605192065 cites W2138938302 @default.
- W2605192065 cites W2143144462 @default.
- W2605192065 cites W2159555138 @default.
- W2605192065 cites W2331515195 @default.
- W2605192065 cites W2480228544 @default.
- W2605192065 cites W3098909924 @default.
- W2605192065 cites W4231857496 @default.
- W2605192065 cites W4235040412 @default.
- W2605192065 cites W4238187298 @default.
- W2605192065 cites W4240819156 @default.
- W2605192065 cites W4250749378 @default.
- W2605192065 cites W4251232737 @default.
- W2605192065 doi "https://doi.org/10.1061/(asce)em.1943-7889.0001211" @default.
- W2605192065 hasPublicationYear "2017" @default.
- W2605192065 type Work @default.
- W2605192065 sameAs 2605192065 @default.
- W2605192065 citedByCount "23" @default.
- W2605192065 countsByYear W26051920652018 @default.
- W2605192065 countsByYear W26051920652019 @default.
- W2605192065 countsByYear W26051920652020 @default.
- W2605192065 countsByYear W26051920652021 @default.
- W2605192065 countsByYear W26051920652022 @default.
- W2605192065 countsByYear W26051920652023 @default.
- W2605192065 crossrefType "journal-article" @default.
- W2605192065 hasAuthorship W2605192065A5065925052 @default.
- W2605192065 hasConcept C105795698 @default.
- W2605192065 hasConcept C121332964 @default.
- W2605192065 hasConcept C126255220 @default.
- W2605192065 hasConcept C134306372 @default.
- W2605192065 hasConcept C158622935 @default.
- W2605192065 hasConcept C182310444 @default.
- W2605192065 hasConcept C19499675 @default.
- W2605192065 hasConcept C197055811 @default.
- W2605192065 hasConcept C23917780 @default.
- W2605192065 hasConcept C28826006 @default.
- W2605192065 hasConcept C33923547 @default.
- W2605192065 hasConcept C62520636 @default.
- W2605192065 hasConceptScore W2605192065C105795698 @default.
- W2605192065 hasConceptScore W2605192065C121332964 @default.
- W2605192065 hasConceptScore W2605192065C126255220 @default.
- W2605192065 hasConceptScore W2605192065C134306372 @default.
- W2605192065 hasConceptScore W2605192065C158622935 @default.
- W2605192065 hasConceptScore W2605192065C182310444 @default.
- W2605192065 hasConceptScore W2605192065C19499675 @default.
- W2605192065 hasConceptScore W2605192065C197055811 @default.
- W2605192065 hasConceptScore W2605192065C23917780 @default.
- W2605192065 hasConceptScore W2605192065C28826006 @default.
- W2605192065 hasConceptScore W2605192065C33923547 @default.
- W2605192065 hasConceptScore W2605192065C62520636 @default.
- W2605192065 hasIssue "6" @default.
- W2605192065 hasLocation W26051920651 @default.
- W2605192065 hasOpenAccess W2605192065 @default.
- W2605192065 hasPrimaryLocation W26051920651 @default.
- W2605192065 hasRelatedWork W1597420886 @default.
- W2605192065 hasRelatedWork W2016598631 @default.
- W2605192065 hasRelatedWork W2024256852 @default.
- W2605192065 hasRelatedWork W2028690217 @default.
- W2605192065 hasRelatedWork W2095521870 @default.
- W2605192065 hasRelatedWork W2124696720 @default.
- W2605192065 hasRelatedWork W2359927052 @default.
- W2605192065 hasRelatedWork W2912679009 @default.
- W2605192065 hasRelatedWork W4312762645 @default.
- W2605192065 hasRelatedWork W4380629835 @default.
- W2605192065 hasVolume "143" @default.