Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605192172> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2605192172 endingPage "4634" @default.
- W2605192172 startingPage "4627" @default.
- W2605192172 abstract "Job openings often go unfulfilled despite a surfeit of unemployed or underemployed workers. One of the main reasons for this is a mismatch between the skills required by employers and the skills that workers possess. This mismatch, also known as the skills gap, can pose socio-economic challenges for an economy. A first step in alleviating the skills gap is to accurately detect skills in human capital data such as resumes and job ads. Comprehensive and accurate detection of skills facilitates analysis of labor market dynamics. It also helps bridge the divide between supply and demand of labor by facilitating reskilling and workforce training programs. In this paper, we describe SKILL, a Named Entity Normalization (NEN) system for occupational skills. SKILL is composed of 1) A skills tagger which uses properties of semantic word vectors to recognize and normalize relevant skills, and 2) A skill entity sense disambiguation component which infers the correct meaning of an identified skill by leveraging Markov Chain Monte Carlo (MCMC) algorithms. Datadriven evaluation using end-user surveys demonstrates that SKILL achieves 90% precision and 73% recall for skills tagging. SKILL is currently used by various internal teams at CareerBuilder for big data workforce analytics, semantic search, job matching, and recommendations.ch." @default.
- W2605192172 created "2017-04-14" @default.
- W2605192172 creator A5015421559 @default.
- W2605192172 creator A5039726158 @default.
- W2605192172 creator A5068755370 @default.
- W2605192172 creator A5073136526 @default.
- W2605192172 date "2017-02-11" @default.
- W2605192172 modified "2023-09-25" @default.
- W2605192172 title "Large-Scale Occupational Skills Normalization for Online Recruitment" @default.
- W2605192172 doi "https://doi.org/10.1609/aaai.v31i2.19086" @default.
- W2605192172 hasPublicationYear "2017" @default.
- W2605192172 type Work @default.
- W2605192172 sameAs 2605192172 @default.
- W2605192172 citedByCount "9" @default.
- W2605192172 countsByYear W26051921722012 @default.
- W2605192172 countsByYear W26051921722018 @default.
- W2605192172 countsByYear W26051921722019 @default.
- W2605192172 countsByYear W26051921722021 @default.
- W2605192172 countsByYear W26051921722022 @default.
- W2605192172 crossrefType "journal-article" @default.
- W2605192172 hasAuthorship W2605192172A5015421559 @default.
- W2605192172 hasAuthorship W2605192172A5039726158 @default.
- W2605192172 hasAuthorship W2605192172A5068755370 @default.
- W2605192172 hasAuthorship W2605192172A5073136526 @default.
- W2605192172 hasConcept C136886441 @default.
- W2605192172 hasConcept C144024400 @default.
- W2605192172 hasConcept C154945302 @default.
- W2605192172 hasConcept C155663085 @default.
- W2605192172 hasConcept C162324750 @default.
- W2605192172 hasConcept C19165224 @default.
- W2605192172 hasConcept C2522767166 @default.
- W2605192172 hasConcept C2776943663 @default.
- W2605192172 hasConcept C2778139618 @default.
- W2605192172 hasConcept C41008148 @default.
- W2605192172 hasConcept C50522688 @default.
- W2605192172 hasConcept C56739046 @default.
- W2605192172 hasConcept C79158427 @default.
- W2605192172 hasConceptScore W2605192172C136886441 @default.
- W2605192172 hasConceptScore W2605192172C144024400 @default.
- W2605192172 hasConceptScore W2605192172C154945302 @default.
- W2605192172 hasConceptScore W2605192172C155663085 @default.
- W2605192172 hasConceptScore W2605192172C162324750 @default.
- W2605192172 hasConceptScore W2605192172C19165224 @default.
- W2605192172 hasConceptScore W2605192172C2522767166 @default.
- W2605192172 hasConceptScore W2605192172C2776943663 @default.
- W2605192172 hasConceptScore W2605192172C2778139618 @default.
- W2605192172 hasConceptScore W2605192172C41008148 @default.
- W2605192172 hasConceptScore W2605192172C50522688 @default.
- W2605192172 hasConceptScore W2605192172C56739046 @default.
- W2605192172 hasConceptScore W2605192172C79158427 @default.
- W2605192172 hasIssue "2" @default.
- W2605192172 hasLocation W26051921721 @default.
- W2605192172 hasOpenAccess W2605192172 @default.
- W2605192172 hasPrimaryLocation W26051921721 @default.
- W2605192172 hasRelatedWork W2214018261 @default.
- W2605192172 hasRelatedWork W2245182011 @default.
- W2605192172 hasRelatedWork W2268028762 @default.
- W2605192172 hasRelatedWork W2483177825 @default.
- W2605192172 hasRelatedWork W2618687695 @default.
- W2605192172 hasRelatedWork W2750758162 @default.
- W2605192172 hasRelatedWork W2972389434 @default.
- W2605192172 hasRelatedWork W4205345993 @default.
- W2605192172 hasRelatedWork W4254345533 @default.
- W2605192172 hasRelatedWork W3126212289 @default.
- W2605192172 hasVolume "31" @default.
- W2605192172 isParatext "false" @default.
- W2605192172 isRetracted "false" @default.
- W2605192172 magId "2605192172" @default.
- W2605192172 workType "article" @default.