Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605215089> ?p ?o ?g. }
- W2605215089 endingPage "94" @default.
- W2605215089 startingPage "84" @default.
- W2605215089 abstract "Incompressible Navier-Stokes solvers based on the projection method often require an expensive numerical solution of a Poisson equation for a pressure-like variable. This often involves linear system solvers based on iterative and multigrid methods which may limit the ability to scale to large numbers of processors. The artificial compressibility method (ACM) [6] introduces a time derivative of the pressure into the incompressible form of the continuity equation creating a coupled closed hyperbolic system that does not require a Poisson equation solution and allows for explicit time-marching and localized stencil numerical methods. Such a scheme should theoretically scale well on large numbers of CPUs, GPU’s, or hybrid CPU-GPU architectures. The original ACM was only valid for steady flows and dual-time stepping was often used for time-accurate simulations. Recently, Clausen [7] has proposed the entropically damped artificial compressibility (EDAC) method which is applicable to both steady and unsteady flows without the need for dual-time stepping. The EDAC scheme was successfully tested with both a finite-difference MacCormack’s method for the two-dimensional lid driven cavity and periodic double shear layer problem and a finite-element method for flow over a square cylinder, with scaling studies on the latter to large numbers of processors. In this study, we discretize the EDAC formulation with a new optimized high-order centered finite-difference scheme and an explicit fourth-order Runge–Kutta method. This is combined with an immersed boundary method to efficiently treat complex geometries and a new robust outflow boundary condition to enable higher Reynolds number simulations on truncated domains. Validation studies for the Taylor–Green Vortex problem and the lid driven cavity problem in both 2D and 3D are presented. An eddy viscosity subgrid-scale model is used to enable large eddy simulations for the 3D cases. Finally, an application to flow over a sphere is presented to highlight the boundary condition and performance comparisons to a traditional incompressible Navier–Stokes solver is shown for the 3D lid driven cavity. Overall, the combined EDAC formulation and discretization is shown to be both effective and affordable." @default.
- W2605215089 created "2017-04-14" @default.
- W2605215089 creator A5019812377 @default.
- W2605215089 creator A5057106073 @default.
- W2605215089 creator A5062287217 @default.
- W2605215089 creator A5065747000 @default.
- W2605215089 creator A5074916660 @default.
- W2605215089 creator A5076401038 @default.
- W2605215089 date "2017-06-01" @default.
- W2605215089 modified "2023-09-30" @default.
- W2605215089 title "A simple and efficient incompressible Navier–Stokes solver for unsteady complex geometry flows on truncated domains" @default.
- W2605215089 cites W1525132831 @default.
- W2605215089 cites W1982494003 @default.
- W2605215089 cites W1984742481 @default.
- W2605215089 cites W1987352716 @default.
- W2605215089 cites W2002028611 @default.
- W2605215089 cites W2005261746 @default.
- W2605215089 cites W2021041911 @default.
- W2605215089 cites W2024739428 @default.
- W2605215089 cites W2026508990 @default.
- W2605215089 cites W2032253013 @default.
- W2605215089 cites W2032534690 @default.
- W2605215089 cites W2033116323 @default.
- W2605215089 cites W2033160387 @default.
- W2605215089 cites W2040262056 @default.
- W2605215089 cites W2045770258 @default.
- W2605215089 cites W2047960706 @default.
- W2605215089 cites W2054854538 @default.
- W2605215089 cites W2056307851 @default.
- W2605215089 cites W2067425689 @default.
- W2605215089 cites W2070690273 @default.
- W2605215089 cites W2075786841 @default.
- W2605215089 cites W2076624853 @default.
- W2605215089 cites W2084047579 @default.
- W2605215089 cites W2087274865 @default.
- W2605215089 cites W2113533261 @default.
- W2605215089 cites W2151173177 @default.
- W2605215089 cites W2159268266 @default.
- W2605215089 cites W2334901958 @default.
- W2605215089 cites W4234769213 @default.
- W2605215089 doi "https://doi.org/10.1016/j.compfluid.2017.03.030" @default.
- W2605215089 hasPublicationYear "2017" @default.
- W2605215089 type Work @default.
- W2605215089 sameAs 2605215089 @default.
- W2605215089 citedByCount "19" @default.
- W2605215089 countsByYear W26052150892018 @default.
- W2605215089 countsByYear W26052150892019 @default.
- W2605215089 countsByYear W26052150892020 @default.
- W2605215089 countsByYear W26052150892021 @default.
- W2605215089 countsByYear W26052150892022 @default.
- W2605215089 countsByYear W26052150892023 @default.
- W2605215089 crossrefType "journal-article" @default.
- W2605215089 hasAuthorship W2605215089A5019812377 @default.
- W2605215089 hasAuthorship W2605215089A5057106073 @default.
- W2605215089 hasAuthorship W2605215089A5062287217 @default.
- W2605215089 hasAuthorship W2605215089A5065747000 @default.
- W2605215089 hasAuthorship W2605215089A5074916660 @default.
- W2605215089 hasAuthorship W2605215089A5076401038 @default.
- W2605215089 hasBestOaLocation W26052150892 @default.
- W2605215089 hasConcept C121332964 @default.
- W2605215089 hasConcept C126255220 @default.
- W2605215089 hasConcept C134306372 @default.
- W2605215089 hasConcept C135628077 @default.
- W2605215089 hasConcept C137119250 @default.
- W2605215089 hasConcept C202426404 @default.
- W2605215089 hasConcept C21018558 @default.
- W2605215089 hasConcept C2524010 @default.
- W2605215089 hasConcept C2778770139 @default.
- W2605215089 hasConcept C2781278361 @default.
- W2605215089 hasConcept C28826006 @default.
- W2605215089 hasConcept C33923547 @default.
- W2605215089 hasConcept C38349280 @default.
- W2605215089 hasConcept C459310 @default.
- W2605215089 hasConcept C50415386 @default.
- W2605215089 hasConcept C57879066 @default.
- W2605215089 hasConcept C65557600 @default.
- W2605215089 hasConcept C73000952 @default.
- W2605215089 hasConcept C76752949 @default.
- W2605215089 hasConcept C84655787 @default.
- W2605215089 hasConcept C93779851 @default.
- W2605215089 hasConcept C96716743 @default.
- W2605215089 hasConcept C97355855 @default.
- W2605215089 hasConceptScore W2605215089C121332964 @default.
- W2605215089 hasConceptScore W2605215089C126255220 @default.
- W2605215089 hasConceptScore W2605215089C134306372 @default.
- W2605215089 hasConceptScore W2605215089C135628077 @default.
- W2605215089 hasConceptScore W2605215089C137119250 @default.
- W2605215089 hasConceptScore W2605215089C202426404 @default.
- W2605215089 hasConceptScore W2605215089C21018558 @default.
- W2605215089 hasConceptScore W2605215089C2524010 @default.
- W2605215089 hasConceptScore W2605215089C2778770139 @default.
- W2605215089 hasConceptScore W2605215089C2781278361 @default.
- W2605215089 hasConceptScore W2605215089C28826006 @default.
- W2605215089 hasConceptScore W2605215089C33923547 @default.
- W2605215089 hasConceptScore W2605215089C38349280 @default.
- W2605215089 hasConceptScore W2605215089C459310 @default.
- W2605215089 hasConceptScore W2605215089C50415386 @default.
- W2605215089 hasConceptScore W2605215089C57879066 @default.