Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605352022> ?p ?o ?g. }
- W2605352022 endingPage "195" @default.
- W2605352022 startingPage "184" @default.
- W2605352022 abstract "A novel methodology to characterize voice diseases using nonlinear dynamics.Use of complexity measures based on the analysis of the time delay embedded space.Transformation of the feature space using a Discrete Hidden Markov Model.The methodology validated on three different datasets with different voice diseases. This work describes a novel methodology to characterize voice diseases by using nonlinear dynamics, considering different complexity measures that are mainly based on the analysis of the time delay embedded space. The feature space is represented with a DHMM and a further transformation of the DHMM states to a hyperdimensional space is performed. The discrimination between healthy and pathological speech signals is peformed by using a RBF-SVM which is trained following a K-fold cross-validation strategy. Results of around 99% of accuracy are obtained for three different voice disorders, disphonia due to laryngeal pathologies, hypernasality due to cleft lip and palate, and dysarthria due to Parkinson's disease." @default.
- W2605352022 created "2017-04-14" @default.
- W2605352022 creator A5002137948 @default.
- W2605352022 creator A5012820160 @default.
- W2605352022 creator A5014414626 @default.
- W2605352022 creator A5016071309 @default.
- W2605352022 creator A5016222197 @default.
- W2605352022 creator A5052161552 @default.
- W2605352022 date "2017-10-01" @default.
- W2605352022 modified "2023-09-25" @default.
- W2605352022 title "Detection of different voice diseases based on the nonlinear characterization of speech signals" @default.
- W2605352022 cites W1034989945 @default.
- W2605352022 cites W1924962846 @default.
- W2605352022 cites W1964546269 @default.
- W2605352022 cites W1972777189 @default.
- W2605352022 cites W1992404540 @default.
- W2605352022 cites W1995271453 @default.
- W2605352022 cites W2000832731 @default.
- W2605352022 cites W2001502765 @default.
- W2605352022 cites W2002080627 @default.
- W2605352022 cites W2010817634 @default.
- W2605352022 cites W2020248475 @default.
- W2605352022 cites W2028897454 @default.
- W2605352022 cites W2031365860 @default.
- W2605352022 cites W2040704490 @default.
- W2605352022 cites W2043665083 @default.
- W2605352022 cites W2044406255 @default.
- W2605352022 cites W2047389778 @default.
- W2605352022 cites W2048235682 @default.
- W2605352022 cites W2050298965 @default.
- W2605352022 cites W2059851411 @default.
- W2605352022 cites W2069953177 @default.
- W2605352022 cites W2072330295 @default.
- W2605352022 cites W2074819132 @default.
- W2605352022 cites W2079240096 @default.
- W2605352022 cites W2090814521 @default.
- W2605352022 cites W2092514808 @default.
- W2605352022 cites W2093862051 @default.
- W2605352022 cites W2095330971 @default.
- W2605352022 cites W2117095944 @default.
- W2605352022 cites W2124428761 @default.
- W2605352022 cites W2127165745 @default.
- W2605352022 cites W2135039447 @default.
- W2605352022 cites W2152643852 @default.
- W2605352022 cites W2154029067 @default.
- W2605352022 cites W2254269345 @default.
- W2605352022 cites W2973515423 @default.
- W2605352022 cites W3105728206 @default.
- W2605352022 cites W766733247 @default.
- W2605352022 doi "https://doi.org/10.1016/j.eswa.2017.04.012" @default.
- W2605352022 hasPublicationYear "2017" @default.
- W2605352022 type Work @default.
- W2605352022 sameAs 2605352022 @default.
- W2605352022 citedByCount "31" @default.
- W2605352022 countsByYear W26053520222018 @default.
- W2605352022 countsByYear W26053520222019 @default.
- W2605352022 countsByYear W26053520222020 @default.
- W2605352022 countsByYear W26053520222021 @default.
- W2605352022 countsByYear W26053520222022 @default.
- W2605352022 countsByYear W26053520222023 @default.
- W2605352022 crossrefType "journal-article" @default.
- W2605352022 hasAuthorship W2605352022A5002137948 @default.
- W2605352022 hasAuthorship W2605352022A5012820160 @default.
- W2605352022 hasAuthorship W2605352022A5014414626 @default.
- W2605352022 hasAuthorship W2605352022A5016071309 @default.
- W2605352022 hasAuthorship W2605352022A5016222197 @default.
- W2605352022 hasAuthorship W2605352022A5052161552 @default.
- W2605352022 hasConcept C121332964 @default.
- W2605352022 hasConcept C153180895 @default.
- W2605352022 hasConcept C154945302 @default.
- W2605352022 hasConcept C158622935 @default.
- W2605352022 hasConcept C171250308 @default.
- W2605352022 hasConcept C192562407 @default.
- W2605352022 hasConcept C204201278 @default.
- W2605352022 hasConcept C2780841128 @default.
- W2605352022 hasConcept C28490314 @default.
- W2605352022 hasConcept C41008148 @default.
- W2605352022 hasConcept C61328038 @default.
- W2605352022 hasConcept C62520636 @default.
- W2605352022 hasConceptScore W2605352022C121332964 @default.
- W2605352022 hasConceptScore W2605352022C153180895 @default.
- W2605352022 hasConceptScore W2605352022C154945302 @default.
- W2605352022 hasConceptScore W2605352022C158622935 @default.
- W2605352022 hasConceptScore W2605352022C171250308 @default.
- W2605352022 hasConceptScore W2605352022C192562407 @default.
- W2605352022 hasConceptScore W2605352022C204201278 @default.
- W2605352022 hasConceptScore W2605352022C2780841128 @default.
- W2605352022 hasConceptScore W2605352022C28490314 @default.
- W2605352022 hasConceptScore W2605352022C41008148 @default.
- W2605352022 hasConceptScore W2605352022C61328038 @default.
- W2605352022 hasConceptScore W2605352022C62520636 @default.
- W2605352022 hasLocation W26053520221 @default.
- W2605352022 hasOpenAccess W2605352022 @default.
- W2605352022 hasPrimaryLocation W26053520221 @default.
- W2605352022 hasRelatedWork W2069501481 @default.
- W2605352022 hasRelatedWork W2099105119 @default.
- W2605352022 hasRelatedWork W2103239478 @default.
- W2605352022 hasRelatedWork W2182174551 @default.