Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605555440> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2605555440 abstract "Composing with the inclusion $mathsf{Set}tomathsf{Cat} $, a $G$ internal to $mathsf{Set} $ becomes a of discrete categories, the coinserter of which is the category freely generated by $G$. Introducing a suitable definition of $n$-computad, we show that a similar approach gives the $n$-category freely generated by an $n$-computad. Suitable $n$-categories with relations on $n$-cells are presented by these $(n+1)$-computads, which allows us to prove results on presentations of thin groupoids and thin categories. So motivated, we introduce a notion of deficiency of (a presentation of) a groupoid via computads and prove that every small connected thin groupoid has deficiency $0$. We compare the resulting notions of deficiency and presentation with those induced by monads. In particular, we find our notion of group deficiency to coincide with the classical one. Finally, we study presentations of $2$-categories via $3$-computads, focusing on locally thin groupoidal $2$-categories. Under suitable hypotheses, we give efficient presentations of some locally thin and groupoidal $2$-categories. A fundamental tool is a $2$-dimensional analogue of the association of a topological graph to every internal to $mathsf{Set} $. Concretely, we construct a left adjoint $mathcal{F}_ {mathsf{Top} _ 2} : 2textrm{-}mathsf{cmp}to mathsf{Top} $ associating a $2$-dimensional CW-complex to each small $2$-computad. Given a $2$-computad $mathfrak{g} $, the groupoid it presents is equivalent to the fundamental groupoid of $mathcal{F} _ {mathsf{Top} _2}(mathfrak{g}) $. Finally, we sketch the $3$-dimensional version $mathcal{F}_ {mathsf{Top} _ 3}$." @default.
- W2605555440 created "2017-04-28" @default.
- W2605555440 creator A5037758905 @default.
- W2605555440 date "2017-04-14" @default.
- W2605555440 modified "2023-09-27" @default.
- W2605555440 title "Freely generated $n$-categories, coinserters and presentations of low dimensional categories" @default.
- W2605555440 cites W1507692549 @default.
- W2605555440 cites W1510067240 @default.
- W2605555440 cites W1562935128 @default.
- W2605555440 cites W158035142 @default.
- W2605555440 cites W1804414602 @default.
- W2605555440 cites W1981049756 @default.
- W2605555440 cites W1988982133 @default.
- W2605555440 cites W1991804056 @default.
- W2605555440 cites W2001144381 @default.
- W2605555440 cites W2012321747 @default.
- W2605555440 cites W2023237551 @default.
- W2605555440 cites W2072149862 @default.
- W2605555440 cites W2081723613 @default.
- W2605555440 cites W2088405398 @default.
- W2605555440 cites W2092347581 @default.
- W2605555440 cites W2430256791 @default.
- W2605555440 cites W2485692483 @default.
- W2605555440 cites W3105744394 @default.
- W2605555440 cites W649591061 @default.
- W2605555440 cites W2003846114 @default.
- W2605555440 hasPublicationYear "2017" @default.
- W2605555440 type Work @default.
- W2605555440 sameAs 2605555440 @default.
- W2605555440 citedByCount "2" @default.
- W2605555440 countsByYear W26055554402016 @default.
- W2605555440 countsByYear W26055554402018 @default.
- W2605555440 crossrefType "posted-content" @default.
- W2605555440 hasAuthorship W2605555440A5037758905 @default.
- W2605555440 hasConcept C11413529 @default.
- W2605555440 hasConcept C114614502 @default.
- W2605555440 hasConcept C118615104 @default.
- W2605555440 hasConcept C132525143 @default.
- W2605555440 hasConcept C177264268 @default.
- W2605555440 hasConcept C199360897 @default.
- W2605555440 hasConcept C202444582 @default.
- W2605555440 hasConcept C2779231336 @default.
- W2605555440 hasConcept C33923547 @default.
- W2605555440 hasConcept C41008148 @default.
- W2605555440 hasConceptScore W2605555440C11413529 @default.
- W2605555440 hasConceptScore W2605555440C114614502 @default.
- W2605555440 hasConceptScore W2605555440C118615104 @default.
- W2605555440 hasConceptScore W2605555440C132525143 @default.
- W2605555440 hasConceptScore W2605555440C177264268 @default.
- W2605555440 hasConceptScore W2605555440C199360897 @default.
- W2605555440 hasConceptScore W2605555440C202444582 @default.
- W2605555440 hasConceptScore W2605555440C2779231336 @default.
- W2605555440 hasConceptScore W2605555440C33923547 @default.
- W2605555440 hasConceptScore W2605555440C41008148 @default.
- W2605555440 hasLocation W26055554401 @default.
- W2605555440 hasOpenAccess W2605555440 @default.
- W2605555440 hasPrimaryLocation W26055554401 @default.
- W2605555440 hasRelatedWork W1544360887 @default.
- W2605555440 hasRelatedWork W1568497082 @default.
- W2605555440 hasRelatedWork W1652726584 @default.
- W2605555440 hasRelatedWork W2051728361 @default.
- W2605555440 hasRelatedWork W2130098253 @default.
- W2605555440 hasRelatedWork W2183864785 @default.
- W2605555440 hasRelatedWork W2184481877 @default.
- W2605555440 hasRelatedWork W2400655006 @default.
- W2605555440 hasRelatedWork W2504678132 @default.
- W2605555440 hasRelatedWork W2889849273 @default.
- W2605555440 hasRelatedWork W2890025815 @default.
- W2605555440 hasRelatedWork W2907564956 @default.
- W2605555440 hasRelatedWork W2925039605 @default.
- W2605555440 hasRelatedWork W2949476295 @default.
- W2605555440 hasRelatedWork W2968337564 @default.
- W2605555440 hasRelatedWork W3016954088 @default.
- W2605555440 hasRelatedWork W3092343395 @default.
- W2605555440 hasRelatedWork W3177449161 @default.
- W2605555440 hasRelatedWork W856440745 @default.
- W2605555440 hasRelatedWork W2916265074 @default.
- W2605555440 isParatext "false" @default.
- W2605555440 isRetracted "false" @default.
- W2605555440 magId "2605555440" @default.
- W2605555440 workType "article" @default.