Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605698416> ?p ?o ?g. }
- W2605698416 endingPage "892" @default.
- W2605698416 startingPage "879" @default.
- W2605698416 abstract "The study of objects similarity in terms of shape has various applications such as determining the similarity degree in object matching. To this end, different functions and descriptors have been used. However, efficiency of each method used in various studies for solving linear object matching in datasets with either different or similar scales or sources has not been studied yet. This article studies the efficiency of the most important functions (i.e. turning, signature, and tangent) along with shape descriptors (i.e. shape context, LORD, and shape signature) in vector datasets with different scales and sources. For this purpose, three datasets of roads network with different sources and scales were employed. Results showed the greater efficiency of the turning function compared to the other methods. In addition to being able to identify corresponding objects in multi-scale datasets, it can improve matching and is capable of discovering shape difference in non-corresponding objects." @default.
- W2605698416 created "2017-04-28" @default.
- W2605698416 creator A5012801475 @default.
- W2605698416 creator A5028765261 @default.
- W2605698416 creator A5073225955 @default.
- W2605698416 date "2017-04-18" @default.
- W2605698416 modified "2023-10-18" @default.
- W2605698416 title "Assessing the efficiency of shape-based functions and descriptors in multi-scale matching of linear objects" @default.
- W2605698416 cites W1549735104 @default.
- W2605698416 cites W1902905916 @default.
- W2605698416 cites W1922340718 @default.
- W2605698416 cites W1941377230 @default.
- W2605698416 cites W1968596169 @default.
- W2605698416 cites W1969536374 @default.
- W2605698416 cites W1977093968 @default.
- W2605698416 cites W1977561493 @default.
- W2605698416 cites W1978171942 @default.
- W2605698416 cites W1980311021 @default.
- W2605698416 cites W1996187920 @default.
- W2605698416 cites W1998826498 @default.
- W2605698416 cites W2001421671 @default.
- W2605698416 cites W2012299618 @default.
- W2605698416 cites W2025785578 @default.
- W2605698416 cites W2031944479 @default.
- W2605698416 cites W2039530979 @default.
- W2605698416 cites W2044572444 @default.
- W2605698416 cites W2045034287 @default.
- W2605698416 cites W2048645911 @default.
- W2605698416 cites W2049069062 @default.
- W2605698416 cites W2054570949 @default.
- W2605698416 cites W2057175746 @default.
- W2605698416 cites W2065721498 @default.
- W2605698416 cites W2071104750 @default.
- W2605698416 cites W2075780554 @default.
- W2605698416 cites W2100318434 @default.
- W2605698416 cites W2108556791 @default.
- W2605698416 cites W2113530345 @default.
- W2605698416 cites W2127402163 @default.
- W2605698416 cites W2151103935 @default.
- W2605698416 cites W2157470342 @default.
- W2605698416 cites W2160580257 @default.
- W2605698416 cites W2165979754 @default.
- W2605698416 cites W2174903957 @default.
- W2605698416 cites W2263615407 @default.
- W2605698416 cites W2315277420 @default.
- W2605698416 cites W2403413376 @default.
- W2605698416 cites W2486354329 @default.
- W2605698416 cites W2501164121 @default.
- W2605698416 cites W4231642914 @default.
- W2605698416 cites W4241800434 @default.
- W2605698416 cites W4298289309 @default.
- W2605698416 doi "https://doi.org/10.1080/10106049.2017.1316777" @default.
- W2605698416 hasPublicationYear "2017" @default.
- W2605698416 type Work @default.
- W2605698416 sameAs 2605698416 @default.
- W2605698416 citedByCount "10" @default.
- W2605698416 countsByYear W26056984162017 @default.
- W2605698416 countsByYear W26056984162018 @default.
- W2605698416 countsByYear W26056984162020 @default.
- W2605698416 countsByYear W26056984162021 @default.
- W2605698416 countsByYear W26056984162022 @default.
- W2605698416 countsByYear W26056984162023 @default.
- W2605698416 crossrefType "journal-article" @default.
- W2605698416 hasAuthorship W2605698416A5012801475 @default.
- W2605698416 hasAuthorship W2605698416A5028765261 @default.
- W2605698416 hasAuthorship W2605698416A5073225955 @default.
- W2605698416 hasConcept C103278499 @default.
- W2605698416 hasConcept C105795698 @default.
- W2605698416 hasConcept C115961682 @default.
- W2605698416 hasConcept C124101348 @default.
- W2605698416 hasConcept C129641003 @default.
- W2605698416 hasConcept C153180895 @default.
- W2605698416 hasConcept C154945302 @default.
- W2605698416 hasConcept C165064840 @default.
- W2605698416 hasConcept C166957645 @default.
- W2605698416 hasConcept C205649164 @default.
- W2605698416 hasConcept C2524010 @default.
- W2605698416 hasConcept C2778755073 @default.
- W2605698416 hasConcept C2779343474 @default.
- W2605698416 hasConcept C2779662243 @default.
- W2605698416 hasConcept C2779696439 @default.
- W2605698416 hasConcept C2781238097 @default.
- W2605698416 hasConcept C33923547 @default.
- W2605698416 hasConcept C41008148 @default.
- W2605698416 hasConcept C45089102 @default.
- W2605698416 hasConcept C58640448 @default.
- W2605698416 hasConcept C89600930 @default.
- W2605698416 hasConceptScore W2605698416C103278499 @default.
- W2605698416 hasConceptScore W2605698416C105795698 @default.
- W2605698416 hasConceptScore W2605698416C115961682 @default.
- W2605698416 hasConceptScore W2605698416C124101348 @default.
- W2605698416 hasConceptScore W2605698416C129641003 @default.
- W2605698416 hasConceptScore W2605698416C153180895 @default.
- W2605698416 hasConceptScore W2605698416C154945302 @default.
- W2605698416 hasConceptScore W2605698416C165064840 @default.
- W2605698416 hasConceptScore W2605698416C166957645 @default.
- W2605698416 hasConceptScore W2605698416C205649164 @default.
- W2605698416 hasConceptScore W2605698416C2524010 @default.