Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605720171> ?p ?o ?g. }
- W2605720171 endingPage "189" @default.
- W2605720171 startingPage "175" @default.
- W2605720171 abstract "In signed social networks, link sign prediction refers to using the observed link signs to infer the signs of the remaining links, which is important for mining and analyzing the evolution of social networks. The widely used matrix factorization-based approach – Bayesian Probabilistic Matrix Factorization (BMF), assumes that the noise between the real and predicted entry is Gaussian noise, and the prior of latent features is multivariate Gaussian distribution. However, Gaussian noise model is sensitive to outliers and is not robust. Gaussian prior model neglects the differences between latent features, that is, it does not distinguish between important and non-important features. Thus, Gaussian assumption based models perform poorly on real-world (sparse) datasets. To address these issues, a novel Variational Bayesian Probabilistic Matrix Factorization with Student-t prior model (TBMF) is proposed in this paper. A univariate Student-t distribution is used to fit the prediction noise, and a multivariate Student-t distribution is adopted for the prior of latent features. Due to the high kurtosis of Student-t distribution, TBMF can select informative latent features automatically, characterize long-tail cases and obtain reasonable representations on many real-world datasets. Experimental results show that TBMF improves the prediction performance significantly compared with the state-of-the-art algorithms, especially when the observed links are few." @default.
- W2605720171 created "2017-04-28" @default.
- W2605720171 creator A5004999983 @default.
- W2605720171 creator A5007475662 @default.
- W2605720171 creator A5033069666 @default.
- W2605720171 creator A5089213156 @default.
- W2605720171 date "2017-09-01" @default.
- W2605720171 modified "2023-10-01" @default.
- W2605720171 title "Link sign prediction by Variational Bayesian Probabilistic Matrix Factorization with Student-t Prior" @default.
- W2605720171 cites W1426176629 @default.
- W2605720171 cites W1968114652 @default.
- W2605720171 cites W1970512461 @default.
- W2605720171 cites W1980928832 @default.
- W2605720171 cites W2000721204 @default.
- W2605720171 cites W2031696998 @default.
- W2605720171 cites W2049848431 @default.
- W2605720171 cites W2055183064 @default.
- W2605720171 cites W2074606547 @default.
- W2605720171 cites W2096299529 @default.
- W2605720171 cites W2112837588 @default.
- W2605720171 cites W2139762415 @default.
- W2605720171 cites W2165430451 @default.
- W2605720171 cites W2323770312 @default.
- W2605720171 cites W2561740238 @default.
- W2605720171 cites W4256705525 @default.
- W2605720171 cites W4293052541 @default.
- W2605720171 doi "https://doi.org/10.1016/j.ins.2017.04.014" @default.
- W2605720171 hasPublicationYear "2017" @default.
- W2605720171 type Work @default.
- W2605720171 sameAs 2605720171 @default.
- W2605720171 citedByCount "11" @default.
- W2605720171 countsByYear W26057201712018 @default.
- W2605720171 countsByYear W26057201712019 @default.
- W2605720171 countsByYear W26057201712020 @default.
- W2605720171 countsByYear W26057201712021 @default.
- W2605720171 countsByYear W26057201712023 @default.
- W2605720171 crossrefType "journal-article" @default.
- W2605720171 hasAuthorship W2605720171A5004999983 @default.
- W2605720171 hasAuthorship W2605720171A5007475662 @default.
- W2605720171 hasAuthorship W2605720171A5033069666 @default.
- W2605720171 hasAuthorship W2605720171A5089213156 @default.
- W2605720171 hasConcept C107673813 @default.
- W2605720171 hasConcept C11413529 @default.
- W2605720171 hasConcept C115961682 @default.
- W2605720171 hasConcept C119857082 @default.
- W2605720171 hasConcept C121332964 @default.
- W2605720171 hasConcept C134306372 @default.
- W2605720171 hasConcept C139676723 @default.
- W2605720171 hasConcept C149782125 @default.
- W2605720171 hasConcept C152671427 @default.
- W2605720171 hasConcept C153180895 @default.
- W2605720171 hasConcept C154945302 @default.
- W2605720171 hasConcept C158693339 @default.
- W2605720171 hasConcept C161584116 @default.
- W2605720171 hasConcept C163716315 @default.
- W2605720171 hasConcept C177769412 @default.
- W2605720171 hasConcept C187834632 @default.
- W2605720171 hasConcept C199163554 @default.
- W2605720171 hasConcept C23922673 @default.
- W2605720171 hasConcept C33923547 @default.
- W2605720171 hasConcept C41008148 @default.
- W2605720171 hasConcept C4199805 @default.
- W2605720171 hasConcept C42355184 @default.
- W2605720171 hasConcept C49232408 @default.
- W2605720171 hasConcept C49937458 @default.
- W2605720171 hasConcept C62520636 @default.
- W2605720171 hasConcept C79337645 @default.
- W2605720171 hasConcept C91602232 @default.
- W2605720171 hasConcept C99498987 @default.
- W2605720171 hasConceptScore W2605720171C107673813 @default.
- W2605720171 hasConceptScore W2605720171C11413529 @default.
- W2605720171 hasConceptScore W2605720171C115961682 @default.
- W2605720171 hasConceptScore W2605720171C119857082 @default.
- W2605720171 hasConceptScore W2605720171C121332964 @default.
- W2605720171 hasConceptScore W2605720171C134306372 @default.
- W2605720171 hasConceptScore W2605720171C139676723 @default.
- W2605720171 hasConceptScore W2605720171C149782125 @default.
- W2605720171 hasConceptScore W2605720171C152671427 @default.
- W2605720171 hasConceptScore W2605720171C153180895 @default.
- W2605720171 hasConceptScore W2605720171C154945302 @default.
- W2605720171 hasConceptScore W2605720171C158693339 @default.
- W2605720171 hasConceptScore W2605720171C161584116 @default.
- W2605720171 hasConceptScore W2605720171C163716315 @default.
- W2605720171 hasConceptScore W2605720171C177769412 @default.
- W2605720171 hasConceptScore W2605720171C187834632 @default.
- W2605720171 hasConceptScore W2605720171C199163554 @default.
- W2605720171 hasConceptScore W2605720171C23922673 @default.
- W2605720171 hasConceptScore W2605720171C33923547 @default.
- W2605720171 hasConceptScore W2605720171C41008148 @default.
- W2605720171 hasConceptScore W2605720171C4199805 @default.
- W2605720171 hasConceptScore W2605720171C42355184 @default.
- W2605720171 hasConceptScore W2605720171C49232408 @default.
- W2605720171 hasConceptScore W2605720171C49937458 @default.
- W2605720171 hasConceptScore W2605720171C62520636 @default.
- W2605720171 hasConceptScore W2605720171C79337645 @default.
- W2605720171 hasConceptScore W2605720171C91602232 @default.
- W2605720171 hasConceptScore W2605720171C99498987 @default.
- W2605720171 hasLocation W26057201711 @default.