Matches in SemOpenAlex for { <https://semopenalex.org/work/W2605821394> ?p ?o ?g. }
- W2605821394 endingPage "210" @default.
- W2605821394 startingPage "191" @default.
- W2605821394 abstract "Abstract. High-resolution maps of soil properties are a prerequisite for assessing soil threats and soil functions and for fostering the sustainable use of soil resources. For many regions in the world, accurate maps of soil properties are missing, but often sparsely sampled (legacy) soil data are available. Soil property data (response) can then be related by digital soil mapping (DSM) to spatially exhaustive environmental data that describe soil-forming factors (covariates) to create spatially continuous maps. With airborne and space-borne remote sensing and multi-scale terrain analysis, large sets of covariates have become common. Building parsimonious models amenable to pedological interpretation is then a challenging task. We propose a new boosted geoadditive modelling framework (geoGAM) for DSM. The geoGAM models smooth non-linear relations between responses and single covariates and combines these model terms additively. Residual spatial autocorrelation is captured by a smooth function of spatial coordinates, and non-stationary effects are included through interactions between covariates and smooth spatial functions. The core of fully automated model building for geoGAM is component-wise gradient boosting. We illustrate the application of the geoGAM framework by using soil data from the Canton of Zurich, Switzerland. We modelled effective cation exchange capacity (ECEC) in forest topsoils as a continuous response. For agricultural land we predicted the presence of waterlogged horizons in given soil depths as binary and drainage classes as ordinal responses. For the latter we used proportional odds geoGAM, taking the ordering of the response properly into account. Fitted geoGAM contained only a few covariates (7 to 17) selected from large sets (333 covariates for forests, 498 for agricultural land). Model sparsity allowed for covariate interpretation through partial effects plots. Prediction intervals were computed by model-based bootstrapping for ECEC. The predictive performance of the fitted geoGAM, tested with independent validation data and specific skill scores for continuous, binary and ordinal responses, compared well with other studies that modelled similar soil properties. Skill score (SS) values of 0.23 to 0.53 (with SS = 1 for perfect predictions and SS = 0 for zero explained variance) were achieved depending on the response and type of score. GeoGAM combines efficient model building from large sets of covariates with effects that are easy to interpret and therefore likely raises the acceptance of DSM products by end-users." @default.
- W2605821394 created "2017-04-28" @default.
- W2605821394 creator A5026667671 @default.
- W2605821394 creator A5026938903 @default.
- W2605821394 creator A5052635758 @default.
- W2605821394 creator A5064406308 @default.
- W2605821394 creator A5070997745 @default.
- W2605821394 date "2017-11-16" @default.
- W2605821394 modified "2023-10-13" @default.
- W2605821394 title "Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models" @default.
- W2605821394 cites W1502812137 @default.
- W2605821394 cites W1513618424 @default.
- W2605821394 cites W1519576029 @default.
- W2605821394 cites W1792920273 @default.
- W2605821394 cites W18678914 @default.
- W2605821394 cites W1891744174 @default.
- W2605821394 cites W1898139269 @default.
- W2605821394 cites W1911362169 @default.
- W2605821394 cites W1974448175 @default.
- W2605821394 cites W1979926362 @default.
- W2605821394 cites W1980753477 @default.
- W2605821394 cites W1985554128 @default.
- W2605821394 cites W1989631626 @default.
- W2605821394 cites W2022423692 @default.
- W2605821394 cites W2024160176 @default.
- W2605821394 cites W2026961403 @default.
- W2605821394 cites W2034582204 @default.
- W2605821394 cites W2034777743 @default.
- W2605821394 cites W2039380015 @default.
- W2605821394 cites W2039660802 @default.
- W2605821394 cites W2043359577 @default.
- W2605821394 cites W2049842380 @default.
- W2605821394 cites W2054325787 @default.
- W2605821394 cites W2066682742 @default.
- W2605821394 cites W2067800992 @default.
- W2605821394 cites W2071721660 @default.
- W2605821394 cites W2076043624 @default.
- W2605821394 cites W2081340599 @default.
- W2605821394 cites W2096783800 @default.
- W2605821394 cites W2097774060 @default.
- W2605821394 cites W2109342520 @default.
- W2605821394 cites W2113890245 @default.
- W2605821394 cites W2116395914 @default.
- W2605821394 cites W2119160928 @default.
- W2605821394 cites W2121597613 @default.
- W2605821394 cites W2125779452 @default.
- W2605821394 cites W2129961764 @default.
- W2605821394 cites W2130560194 @default.
- W2605821394 cites W2131467120 @default.
- W2605821394 cites W2153541213 @default.
- W2605821394 cites W2153944160 @default.
- W2605821394 cites W2161514282 @default.
- W2605821394 cites W2163125005 @default.
- W2605821394 cites W2163551260 @default.
- W2605821394 cites W2165686389 @default.
- W2605821394 cites W2168145686 @default.
- W2605821394 cites W2186294614 @default.
- W2605821394 cites W2274267064 @default.
- W2605821394 cites W2481948745 @default.
- W2605821394 cites W2488433815 @default.
- W2605821394 cites W2498963908 @default.
- W2605821394 cites W2517842603 @default.
- W2605821394 cites W2546471256 @default.
- W2605821394 cites W2588003345 @default.
- W2605821394 cites W2608720956 @default.
- W2605821394 cites W2787894218 @default.
- W2605821394 cites W3099723433 @default.
- W2605821394 cites W3124158594 @default.
- W2605821394 cites W4211056572 @default.
- W2605821394 cites W4231441664 @default.
- W2605821394 cites W4232552111 @default.
- W2605821394 cites W4233028157 @default.
- W2605821394 cites W4243942560 @default.
- W2605821394 cites W4253016408 @default.
- W2605821394 cites W4298401804 @default.
- W2605821394 cites W4298870098 @default.
- W2605821394 cites W4298872162 @default.
- W2605821394 doi "https://doi.org/10.5194/soil-3-191-2017" @default.
- W2605821394 hasPublicationYear "2017" @default.
- W2605821394 type Work @default.
- W2605821394 sameAs 2605821394 @default.
- W2605821394 citedByCount "15" @default.
- W2605821394 countsByYear W26058213942017 @default.
- W2605821394 countsByYear W26058213942018 @default.
- W2605821394 countsByYear W26058213942019 @default.
- W2605821394 countsByYear W26058213942020 @default.
- W2605821394 countsByYear W26058213942021 @default.
- W2605821394 countsByYear W26058213942022 @default.
- W2605821394 countsByYear W26058213942023 @default.
- W2605821394 crossrefType "journal-article" @default.
- W2605821394 hasAuthorship W2605821394A5026667671 @default.
- W2605821394 hasAuthorship W2605821394A5026938903 @default.
- W2605821394 hasAuthorship W2605821394A5052635758 @default.
- W2605821394 hasAuthorship W2605821394A5064406308 @default.
- W2605821394 hasAuthorship W2605821394A5070997745 @default.
- W2605821394 hasBestOaLocation W26058213941 @default.
- W2605821394 hasConcept C104471815 @default.
- W2605821394 hasConcept C105795698 @default.